Do you want to publish a course? Click here

A Non-Perturbative Renormalization Group approach to quantum XY spin models

126   0   0.0 ( 0 )
 Added by Adam Rancon
 Publication date 2014
  fields Physics
and research's language is English
 Authors A. Rancon




Ask ChatGPT about the research

We present a Lattice Non-Perturbative Renormalization Group (NPRG) approach to quantum XY spin models by using a mapping onto hardcore bosons. The NPRG takes as initial condition of the renormalization group flow the (local) limit of decoupled sites, allowing us to take into account the hardcore constraint exactly. The initial condition of the flow is equivalent to the large $S$ classical results of the corresponding spin system. Furthermore, the hardcore constraint is conserved along the RG flow, and we can describe both local and long-distance fluctuations in a non-trivial way. We discuss a simple approximation scheme, and solve the corresponding flow equations. We compute both the zero-temperature thermodynamics and the finite temperature phase diagram on the square and cubic lattices. The NPRG allows us to recover the correct critical physics at finite temperature in two and three dimensions. The results compare well with numerical simulations.



rate research

Read More

273 - N. Dupuis , K. Sengupta 2008
The non-perturbative renormalization-group approach is extended to lattice models, considering as an example a $phi^4$ theory defined on a $d$-dimensional hypercubic lattice. Within a simple approximation for the effective action, we solve the flow equations and obtain the renormalized dispersion $eps(q)$ over the whole Brillouin zone of the reciprocal lattice. In the long-distance limit, where the lattice does not matter any more, we reproduce the usual flow equations of the continuum model. We show how the numerical solution of the flow equations can be simplified by expanding the dispersion in a finite number of circular harmonics.
371 - Boran Zhou , Rui Wang , 2020
Critical transition points between symmetry-broken phases are characterized as fixed points in the renormalization group (RG) theory. We show that, following the standard Wilsonian procedure that traces out the large momentum modes, this well known fact can break down in non-Hermitian systems. Based on non-Hermitian Su-Schrieffer-Hegger (SSH)-type models, we propose a real-space decimation scheme to study the criticality between the topological and trivial phase. We provide concrete examples and an analytic proof to show that the real-space scheme perfectly overcomes the insufficiency of the standard method, especially in the sense that it always preserves the system at criticality as fixed points under RG. The proposed method can also greatly simplify the search of critical points for complicated non-Hermitian models by ruling out the irrelevant operators. These results pave the way towards more advanced RG-based techniques for the interacting non-Hermitian quantum systems.
239 - T. Machado , N. Dupuis 2010
We propose a modification of the non-perturbative renormalization-group (NPRG) which applies to lattice models. Contrary to the usual NPRG approach where the initial condition of the RG flow is the mean-field solution, the lattice NPRG uses the (local) limit of decoupled sites as the (initial) reference system. In the long-distance limit, it is equivalent to the usual NPRG formulation and therefore yields identical results for the critical properties. We discuss both a lattice field theory defined on a $d$-dimensional hypercubic lattice and classical spin systems. The simplest approximation, the local potential approximation, is sufficient to obtain the critical temperature and the magnetization of the 3D Ising, XY and Heisenberg models to an accuracy of the order of one percent. We show how the local potential approximation can be improved to include a non-zero anomalous dimension $eta$ and discuss the Berezinskii-Kosterlitz-Thouless transition of the 2D XY model on a square lattice.
269 - N. Dupuis , K. Sengupta 2007
We use a non-perturbative renormalization-group technique to study interacting bosons at zero temperature. Our approach reveals the instability of the Bogoliubov fixed point when $dleq 3$ and yields the exact infrared behavior in all dimensions $d>1$ within a rather simple theoretical framework. It also enables to compute the low-energy properties in terms of the parameters of a microscopic model. In one-dimension and for not too strong interactions, it yields a good picture of the Luttinger-liquid behavior of the superfluid phase.
229 - A. Rancon , N. Dupuis 2010
We present a non-perturbative renormalization-group approach to the Bose-Hubbard model. By taking as initial condition of the RG flow the (local) limit of decoupled sites, we take into account both local and long-distance fluctuations in a nontrivial way. This approach yields a phase diagram in very good quantitative agreement with the quantum Monte Carlo results and reproduces the two universality classes of the superfluid--Mott-insulator transition with a good estimate of the critical exponents. Furthermore, it reveals the crucial role of the Ginzburg length as a crossover length between a weakly- and a strongly-correlated superfluid phase.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا