No Arabic abstract
We investigate the problem of $N$ identical bosons that are coupled to an impurity particle with infinite mass. For non-interacting bosons, we show that a dynamical impurity-boson interaction, mediated by a closed-channel dimer, can induce an effective boson-boson repulsion which strongly modifies the bound states consisting of the impurity and $N$ bosons. In particular, we demonstrate the existence of two universal multi-body resonances, where all multi-body bound states involving any $N$ emerge and disappear. The first multi-body resonance corresponds to infinite impurity-boson scattering length, $ato +infty$, while the second corresponds to the critical scattering length $a^*>0$ beyond which the trimer ($N=2$ bound state) ceases to exist. Crucially, we show that the existence of $a^*$ ensures that the ground-state energy in the multi-body bound-state region, $infty>a> a^*$, is bounded from below, with a bound that is independent of $N$. Thus, even though the impurity can support multi-body bound states, they become increasingly fragile beyond the dimer state. This has implications for the nature of the Bose polaron currently being studied in cold-atom experiments.
We present a new theoretical framework for describing an impurity in a trapped Bose system in one spatial dimension. The theory handles any external confinement, arbitrary mass ratios, and a weak interaction may be included between the Bose particles. To demonstrate our technique, we calculate the ground state energy and properties of a sample system with eight bosons and find an excellent agreement with numerically exact results. Our theory can thus provide definite predictions for experiments in cold atomic gases.
Motivated by a recent experiment [J. Catani et al., arXiv:1106.0828v1 preprint, 2011], we study breathing oscillations in the width of a harmonically trapped impurity interacting with a separately trapped Bose gas. We provide an intuitive physical picture of such dynamics at zero temperature, using a time-dependent variational approach. In the Gross-Pitaevskii regime we obtain breathing oscillations whose amplitudes are suppressed by self trapping, due to interactions with the Bose gas. Introducing phonons in the Bose gas leads to the damping of breathing oscillations and non-Markovian dynamics of the width of the impurity, the degree of which can be engineered through controllable parameters. Our results reproduce the main features of the impurity dynamics observed by Catani et al. despite experimental thermal effects, and are supported by simulations of the system in the Gross-Pitaevskii regime. Moreover, we predict novel effects at lower temperatures due to self-trapping and the inhomogeneity of the trapped Bose gas.
We consider the real time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion -- a period of quasistationary behavior. When the impurity is injected with a finite center of mass momentum, the impurity moves through the background gas in a snaking manner, arising from a quantum Newtons cradle-like scenario where momentum is exchanged back-and-forth between the impurity and the background gas.
We predict the existence of a dip below unity in the second-order coherence function of a partially condensed ideal Bose gas in harmonic confinement, signaling the anticorrelation of density fluctuations in the sample. The dip in the second-order coherence function is revealed in a canonical-ensemble calculation, corresponding to a system with fixed total number of particles. In a grand-canonical ensemble description, this dip is obscured by the occupation-number fluctuation catastrophe of the ideal Bose gas. The anticorrelation is most pronounced in highly anisotropic trap geometries containing small particle numbers. We explain the fundamental physical mechanism which underlies this phenomenon, and its relevance to experiments on interacting Bose gases.
We study three-body recombination in an ultracold Bose-Fermi mixture. We first show theoretically that, for weak inter-species coupling, the loss rate is proportional to Tans contact. Second, using a 7 Li/ 6 Li mixture we probe the recombination rate in both the thermal and dual superfluid regimes. We find excellent agreement with our model in the BEC-BCS crossover. At unitarity where the fermion-fermion scattering length diverges, we show that the loss rate is proportional the 4/3 power of the fermionic density. Our results demonstrate that impurity-induced losses can be used as a quantitative probe of many-body correlations.