No Arabic abstract
We predict the existence of a dip below unity in the second-order coherence function of a partially condensed ideal Bose gas in harmonic confinement, signaling the anticorrelation of density fluctuations in the sample. The dip in the second-order coherence function is revealed in a canonical-ensemble calculation, corresponding to a system with fixed total number of particles. In a grand-canonical ensemble description, this dip is obscured by the occupation-number fluctuation catastrophe of the ideal Bose gas. The anticorrelation is most pronounced in highly anisotropic trap geometries containing small particle numbers. We explain the fundamental physical mechanism which underlies this phenomenon, and its relevance to experiments on interacting Bose gases.
We experimentally study the energy-temperature relationship of a harmonically trapped Bose-Einstein condensate by transferring a known quantity of energy to the condensate and measuring the resulting temperature change. We consider two methods of heat transfer, the first using a free expansion under gravity and the second using an optical standing wave to diffract the atoms in the potential. We investigate the effect of interactions on the thermodynamics and compare our results to various finite temperature theories.
We study a harmonically confined Bose-Bose mixture using quantum Monte Carlo methods. Our results for the density profiles are systematically compared with mean-field predictions derived through the Gross-Pitaevskii equation in the same conditions. The phase space as a function of the interaction strengths and the relation between masses is quite rich. The miscibility criterion for the homogeneous system applies rather well to the system, with some discrepancies close to the critical line for separation. We observe significant differences between the mean-field results and the Monte Carlo ones, that magnify when the asymmetry between masses increases. In the analyzed interaction regime, we observe universality of our results which extend beyond the applicability regime for the Gross-Pitaevskii equation.
Motivated by previous suggestions that three-body hard-core interactions in lower-dimensional ultracold Bose gases might provide a way for creation of non-Abelian anyons, the exact ground state of a harmonically trapped 1D Bose gas with three-body hard-core interactions is constructed by duality mapping, starting from an $N$-particle ideal gas of mixed symmetry with three-body nodes, which has double occupation of the lowest harmonic oscillator orbital and single occupation of the next $N-2$ orbitals. It has some similarity to the ground state of a Tonks-Girardeau gas, but is more complicated. It is proved that in 1D any system of $Nge 3$ bosons with three-body hard-core interactions also has two-body soft-core interactions of generalized Lieb-Liniger delta function form, as a consequence of the topology of the configuration space of $N$ particles in 1D, i.e., wave functions with emph{only} three-body hard core zeroes are topologically impossible. This is in contrast with the case of 2D, where pure three-body hard-core interactions do exist, and are closely related to the fractional quantized Hall effect. The exact ground state is compared with a previously-proposed Pfaffian-like approximate ground state, which satisfies the three-body hard-core constraint but is not an exact energy eigenstate. Both the exact ground state and the Pfaffian-like approximation imply two-body soft-core interactions as well as three-body hard-core interactions, in accord with the general topological proof.
We study the ground state of a one-dimensional (1D) trapped Bose gas with two mobile impurity particles. To investigate this set-up, we develop a variational procedure in which the coordinates of the impurity particles are slow-like variables. We validate our method using the exact results obtained for small systems. Then, we discuss energies and pair densities for systems that contain of the order of one hundred atoms. We show that bosonic non-interacting impurities cluster. To explain this clustering, we calculate and discuss induced impurity-impurity potentials in a harmonic trap. Further, we compute the force between static impurities in a ring ({it {`a} la} the Casimir force), and contrast the two effective potentials: the one obtained from the mean-field approximation, and the one due to the one-phonon exchange. Our formalism and findings are important for understanding (beyond the polaron model) the physics of modern 1D cold-atom systems with more than one impurity.
We study experimentally and numerically the equilibrium density profiles of a trapped two-dimensional $^{87}$Rb Bose gas, and investigate the equation of state of the homogeneous system using the local density approximation. We find a clear discrepancy between in-situ measurements and Quantum Monte Carlo simulations, which we attribute to a non-linear variation of the optical density of the atomic cloud with its spatial density. However, good agreement between experiment and theory is recovered for the density profiles measured after time-of-flight, taking advantage of their self-similarity in a two-dimensional expansion.