No Arabic abstract
We study three-body recombination in an ultracold Bose-Fermi mixture. We first show theoretically that, for weak inter-species coupling, the loss rate is proportional to Tans contact. Second, using a 7 Li/ 6 Li mixture we probe the recombination rate in both the thermal and dual superfluid regimes. We find excellent agreement with our model in the BEC-BCS crossover. At unitarity where the fermion-fermion scattering length diverges, we show that the loss rate is proportional the 4/3 power of the fermionic density. Our results demonstrate that impurity-induced losses can be used as a quantitative probe of many-body correlations.
We analyze the two-body momentum correlation function for a uniform weakly interacting one-dimensional Bose gas. We show that the strong positive correlation between opposite momenta, expected in a Bose-Einstein condensate with a true long-range order, almost vanishes in a phase-fluctuating quasicondensate where the long-range order is destroyed. Using the Luttinger liquid approach, we derive an analytic expression for the momentum correlation function in the quasicondensate regime, showing (i) the reduction and broadening of the opposite-momentum correlations (compared to the singular behavior in a true condensate) and (ii) an emergence of anticorrelations at small momenta. We also numerically investigate the momentum correlations in the crossover between the quasicondensate and the ideal Bose-gas regimes using a classical field approach and show how the anticorrelations gradually disappear in the ideal-gas limit.
We demonstrate that an undamped few-body precursor of the Higgs mode can be investigated in a harmonically trapped Fermi gas. Using exact diagonalisation, the lowest monopole mode frequency is shown to depend non-monotonically on the interaction strength, having a minimum in a crossover region. The minimum deepens with increasing particle number, reflecting that the mode is the few-body analogue of a many-body Higgs mode in the superfluid phase, which has a vanishing frequency at the quantum phase transition point to the normal phase. We show that this mode mainly consists of coherent excitations of time-reversed pairs, and that it can be selectively excited by modulating the interaction strength, using for instance a Feshbach resonance in cold atomic gases.
We investigate the problem of $N$ identical bosons that are coupled to an impurity particle with infinite mass. For non-interacting bosons, we show that a dynamical impurity-boson interaction, mediated by a closed-channel dimer, can induce an effective boson-boson repulsion which strongly modifies the bound states consisting of the impurity and $N$ bosons. In particular, we demonstrate the existence of two universal multi-body resonances, where all multi-body bound states involving any $N$ emerge and disappear. The first multi-body resonance corresponds to infinite impurity-boson scattering length, $ato +infty$, while the second corresponds to the critical scattering length $a^*>0$ beyond which the trimer ($N=2$ bound state) ceases to exist. Crucially, we show that the existence of $a^*$ ensures that the ground-state energy in the multi-body bound-state region, $infty>a> a^*$, is bounded from below, with a bound that is independent of $N$. Thus, even though the impurity can support multi-body bound states, they become increasingly fragile beyond the dimer state. This has implications for the nature of the Bose polaron currently being studied in cold-atom experiments.
Few-body correlations emerging in two-dimensional harmonically trapped mixtures, are comprehensively investigated. The presence of the trap leads to the formation of atom-dimer and trap states, in addition to trimers. The Tans contacts of these eigenstates are studied for varying interspecies scattering lengths and mass ratio, while corresponding analytical insights are provided within the adiabatic hyperspherical formalism. The two- and three-body correlations of trimer states are substantially enhanced compared to the other eigenstates. The two-body contact of the atom-dimer and trap states features an upper bound regardless of the statistics, treated semi-classically and having an analytical prediction in the limit of large scattering lengths. Such an upper bound is absent in the three-body contact. Interestingly, by tuning the interspecies scattering length the contacts oscillate as the atom-dimer and trap states change character through the existent avoided-crossings in the energy spectra. For thermal gases, a gradual suppression of the involved two- and three-body correlations is evinced manifesting the impact of thermal effects. Moreover, spatial configurations of the distinct eigenstates ranging from localized structures to angular anisotropic patterns are captured. Our results provide valuable insights into the inherent correlation mechanisms of few-body mixtures which can be implemented in recent ultracold atom experiments and will be especially useful for probing the crossover from few- to many-atom systems.
In this article we investigate the properties of an impurity immersed in a superfluid of strongly correlated spin 1/2 fermions. For resonant interactions, we first relate the stability diagram of dimer and trimer states to the three-body problem for an impurity interacting with a pair of fermions. Then we calculate the beyond-mean-field corrections to the energy of a weakly interacting impurity. We show that these corrections are divergent and have to be regularized by properly accounting for three-body physics in the problem.