Do you want to publish a course? Click here

Vehicle Communication using Secrecy Capacity

102   0   0.0 ( 0 )
 Added by Na-Young Ahn
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We address secure vehicle communication using secrecy capacity. In particular, we research the relationship between secrecy capacity and various types of parameters that determine secrecy capacity in the vehicular wireless network. For example, we examine the relationship between vehicle speed and secrecy capacity, the relationship between the response time and secrecy capacity of an autonomous vehicle, and the relationship between transmission power and secrecy capacity. In particular, the autonomous vehicle has set the system modeling on the assumption that the speed of the vehicle is related to the safety distance. We propose new vehicle communication to maintain a certain level of secrecy capacity according to various parameters. As a result, we can expect safer communication security of autonomous vehicles in 5G communications.



rate research

Read More

The fading broadcast channel with confidential messages (BCC) is investigated, where a source node has common information for two receivers (receivers 1 and 2), and has confidential information intended only for receiver 1. The confidential information needs to be kept as secret as possible from receiver 2. The channel state information (CSI) is assumed to be known at both the transmitter and the receivers. The secrecy capacity region is first established for the parallel Gaussian BCC, and the optimal source power allocations that achieve the boundary of the secrecy capacity region are derived. In particular, the secrecy capacity region is established for the Gaussian case of the Csiszar-Korner BCC model. The secrecy capacity results are then applied to give the ergodic secrecy capacity region for the fading BCC.
The secrecy capacity of relay channels with orthogonal components is studied in the presence of an additional passive eavesdropper node. The relay and destination receive signals from the source on two orthogonal channels such that the destination also receives transmissions from the relay on its channel. The eavesdropper can overhear either one or both of the orthogonal channels. Inner and outer bounds on the secrecy capacity are developed for both the discrete memoryless and the Gaussian channel models. For the discrete memoryless case, the secrecy capacity is shown to be achieved by a partial decode-and-forward (PDF) scheme when the eavesdropper can overhear only one of the two orthogonal channels. Two new outer bounds are presented for the Gaussian model using recent capacity results for a Gaussian multi-antenna point-to-point channel with a multi-antenna eavesdropper. The outer bounds are shown to be tight for two sub-classes of channels. The first sub-class is one in which the source and relay are clustered and the and the eavesdropper receives signals only on the channel from the source and the relay to the destination, for which the PDF strategy is optimal. The second is a sub-class in which the source does not transmit to the relay, for which a noise-forwarding strategy is optimal.
63 - Eric Graves , Tan F. Wong 2017
This paper employs equal-image-size source partitioning techniques to derive the capacities of the general discrete memoryless wiretap channel (DM-WTC) under four different secrecy criteria. These criteria respectively specify requirements on the expected values and tail probabilities of the differences, in absolute value and in exponent, between the joint probability of the secret message and the eavesdroppers observation and the corresponding probability if they were independent. Some of these criteria reduce back to the standard leakage and variation distance constraints that have been previously considered in the literature. The capacities under these secrecy criteria are found to be different when non-vanishing error and secrecy tolerances are allowed. Based on these new results, we are able to conclude that the strong converse property generally holds for the DM-WTC only under the two secrecy criteria based on constraining the tail probabilities. Under the secrecy criteria based on the expected values, an interesting phase change phenomenon is observed as the tolerance values vary.
This letter proposes a new full-duplex (FD) secrecy communication scheme for the unmanned aerial vehicle (UAV) and investigates its optimal design to achieve the maximum energy efficiency (EE) of the UAV. Specifically, the UAV receives the confidential information from a ground source and meanwhile sends jamming signals to interfere with a potential ground eavesdropper. As the UAV has limited on-board energy in practice, we aim to maximize the EE for its secrecy communication, by jointly optimizing the UAV trajectory and the source/UAV transmit/jamming powers over a finite flight period with given initial and final locations. Although the problem is difficult to solve, we propose an efficient iterative algorithm to obtain its suboptimal solution. Simulation results show that the proposed joint design can significantly improve the EE of UAV secrecy communication, as compared to various benchmark schemes.
141 - Tie Liu , Shlomo Shamai 2007
Recently, the secrecy capacity of the multi-antenna wiretap channel was characterized by Khisti and Wornell [1] using a Sato-like argument. This note presents an alternative characterization using a channel enhancement argument. This characterization relies on an extremal entropy inequality recently proved in the context of multi-antenna broadcast channels, and is directly built on the physical intuition regarding to the optimal transmission strategy in this communication scenario.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا