Do you want to publish a course? Click here

Secrecy capacity of a class of orthogonal relay eavesdropper channels

294   0   0.0 ( 0 )
 Added by Vaneet Aggarwal
 Publication date 2009
and research's language is English




Ask ChatGPT about the research

The secrecy capacity of relay channels with orthogonal components is studied in the presence of an additional passive eavesdropper node. The relay and destination receive signals from the source on two orthogonal channels such that the destination also receives transmissions from the relay on its channel. The eavesdropper can overhear either one or both of the orthogonal channels. Inner and outer bounds on the secrecy capacity are developed for both the discrete memoryless and the Gaussian channel models. For the discrete memoryless case, the secrecy capacity is shown to be achieved by a partial decode-and-forward (PDF) scheme when the eavesdropper can overhear only one of the two orthogonal channels. Two new outer bounds are presented for the Gaussian model using recent capacity results for a Gaussian multi-antenna point-to-point channel with a multi-antenna eavesdropper. The outer bounds are shown to be tight for two sub-classes of channels. The first sub-class is one in which the source and relay are clustered and the and the eavesdropper receives signals only on the channel from the source and the relay to the destination, for which the PDF strategy is optimal. The second is a sub-class in which the source does not transmit to the relay, for which a noise-forwarding strategy is optimal.



rate research

Read More

The fading broadcast channel with confidential messages (BCC) is investigated, where a source node has common information for two receivers (receivers 1 and 2), and has confidential information intended only for receiver 1. The confidential information needs to be kept as secret as possible from receiver 2. The channel state information (CSI) is assumed to be known at both the transmitter and the receivers. The secrecy capacity region is first established for the parallel Gaussian BCC, and the optimal source power allocations that achieve the boundary of the secrecy capacity region are derived. In particular, the secrecy capacity region is established for the Gaussian case of the Csiszar-Korner BCC model. The secrecy capacity results are then applied to give the ergodic secrecy capacity region for the fading BCC.
89 - Yuanpeng Liu , Elza Erkip 2015
In this paper, a class of broadcast interference channels (BIC) is investigated, where one of the two broadcast receivers is subject to interference coming from a point-to-point transmission. For a general discrete memoryless broadcast interference channel (DM-BIC), an achievable scheme based on message splitting, superposition and binning is proposed and a concise representation of the corresponding achievable rate region R is obtained. Two partial-order broadcast conditions interference-oblivious less noisy and interference-cognizant less noisy are defined, thereby extending the usual less noisy condition for a regular broadcast channel by taking interference into account. Under these conditions, a reduced form of R is shown to be equivalent to a rate region based on a simpler scheme, where the broadcast transmitter uses only superposition. Furthermore, if interference is strong for the interference-oblivious less noisy DM-BIC, the capacity region is given by the aforementioned two equivalent rate regions. For a Gaussian broadcast interference channel (GBIC), channel parameters are categorized into three regimes. For the first two regimes, which are closely related to the two partial-order broadcast conditions, achievable rate regions are derived by specializing the corresponding achievable schemes of DM-BICs with Gaussian input distributions. The entropy power inequality (EPI) based outer bounds are obtained by combining bounding techniques for a Gaussian broadcast channel (GBC) and a Gaussian interference channel (GIC). These inner and outer bounds lead to either exact or approximate characterizations of capacity regions and sum capacity under various conditions. For the remaining complementing regime, inner and outer bounds are also provided.
We address secure vehicle communication using secrecy capacity. In particular, we research the relationship between secrecy capacity and various types of parameters that determine secrecy capacity in the vehicular wireless network. For example, we examine the relationship between vehicle speed and secrecy capacity, the relationship between the response time and secrecy capacity of an autonomous vehicle, and the relationship between transmission power and secrecy capacity. In particular, the autonomous vehicle has set the system modeling on the assumption that the speed of the vehicle is related to the safety distance. We propose new vehicle communication to maintain a certain level of secrecy capacity according to various parameters. As a result, we can expect safer communication security of autonomous vehicles in 5G communications.
Secrecy issues of free-space optical links realizing information theoretically secure communications as well as high transmission rates are discussed. We numerically study secrecy communication rates of optical wiretap channel based on on-off keying modulation under typical conditions met in satellite-ground links. It is shown that under reasonable degraded conditions on a wiretapper, information theoretically secure communications should be possible in a much wider distance range than a range limit of quantum key distribution, enabling secure optical links between geostationary earth orbit satellites and ground stations with currently available technologies. We also provide the upper bounds on the decoding error probability and the leaked information to estimate a necessary code length for given required levels of performances. This result ensures that a reasonable length wiretap channel code for our proposed scheme must exist.
The capacity regions are investigated for two relay broadcast channels (RBCs), where relay links are incorporated into standard two-user broadcast channels to support user cooperation. In the first channel, the Partially Cooperative Relay Broadcast Channel, only one user in the system can act as a relay and transmit to the other user through a relay link. An achievable rate region is derived based on the relay using the decode-and-forward scheme. An outer bound on the capacity region is derived and is shown to be tighter than the cut-set bound. For the special case where the Partially Cooperative RBC is degraded, the achievable rate region is shown to be tight and provides the capacity region. Gaussian Partially Cooperative RBCs and Partially Cooperative RBCs with feedback are further studied. In the second channel model being studied in the paper, the Fully Cooperative Relay Broadcast Channel, both users can act as relay nodes and transmit to each other through relay links. This is a more general model than the Partially Cooperative RBC. All the results for Partially Cooperative RBCs are correspondingly generalized to the Fully Cooperative RBCs. It is further shown that the AWGN Fully Cooperative RBC has a larger achievable rate region than the AWGN Partially Cooperative RBC. The results illustrate that relaying and user cooperation are powerful techniques in improving the capacity of broadcast channels.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا