Do you want to publish a course? Click here

Secrecy Capacity Region of Fading Broadcast Channels

244   0   0.0 ( 0 )
 Added by Yingbin Liang
 Publication date 2007
and research's language is English




Ask ChatGPT about the research

The fading broadcast channel with confidential messages (BCC) is investigated, where a source node has common information for two receivers (receivers 1 and 2), and has confidential information intended only for receiver 1. The confidential information needs to be kept as secret as possible from receiver 2. The channel state information (CSI) is assumed to be known at both the transmitter and the receivers. The secrecy capacity region is first established for the parallel Gaussian BCC, and the optimal source power allocations that achieve the boundary of the secrecy capacity region are derived. In particular, the secrecy capacity region is established for the Gaussian case of the Csiszar-Korner BCC model. The secrecy capacity results are then applied to give the ergodic secrecy capacity region for the fading BCC.



rate research

Read More

In this paper, we investigate upper and lower bounds on the capacity of two-user fading broadcast channels where one of the users has a constant (non-fading) channel. We use the Costa entropy power inequality (EPI) along with an optimization framework to derive upper bounds on the sum-capacity and superposition coding to obtain lower bounds on the sum-rate for this channel. For this fading broadcast channel where one channel is constant, we find that the upper and lower bounds meet under special cases, and in general, we show that the achievable sum-rate comes within a constant of the outer bound.
A broadcast channel (BC) where the decoders cooperate via a one-sided link is considered. One common and two private messages are transmitted and the private message to the cooperative user should be kept secret from the cooperation-aided user. The secrecy level is measured in terms of strong secrecy, i.e., a vanishing information leakage. An inner bound on the capacity region is derived by using a channel-resolvability-based code that double-bins the codebook of the secret message, and by using a likelihood encoder to choose the transmitted codeword. The inner bound is shown to be tight for semi-deterministic and physically degraded BCs and the results are compared to those of the corresponding BCs without a secrecy constraint. Blackwell and Gaussian BC examples illustrate the impact of secrecy on the rate regions. Unlike the case without secrecy, where sharing information about both private messages via the cooperative link is optimal, our protocol conveys parts of the common and non-confidential messages only. This restriction reduces the transmission rates more than the usual rate loss due to secrecy requirements. An example that illustrates this loss is provided.
In wireless data networks, communication is particularly susceptible to eavesdropping due to its broadcast nature. Security and privacy systems have become critical for wireless providers and enterprise networks. This paper considers the problem of secret communication over the Gaussian broadcast channel, where a multi-antenna transmitter sends independent confidential messages to two users with information-theoretic secrecy. That is, each user would like to obtain its own confidential message in a reliable and safe manner. This communication model is referred to as the multi-antenna Gaussian broadcast channel with confidential messages (MGBC-CM). Under this communication scenario, a secret dirty-paper coding scheme and the corresponding achievable secrecy rate region are first developed based on Gaussian codebooks. Next, a computable Sato-type outer bound on the secrecy capacity region is provided for the MGBC-CM. Furthermore, the Sato-type outer bound prove to be consistent with the boundary of the secret dirty-paper coding achievable rate region, and hence, the secrecy capacity region of the MGBC-CM is established. Finally, two numerical examples demonstrate that both users can achieve positive rates simultaneously under the information-theoretic secrecy requirement.
Jolfaei et al. used feedback to create transmit signals that are simultaneously useful for multiple users in a broadcast channel. Later, Georgiadis and Tassiulas studied erasure broadcast channels with feedback, and presented the capacity region under certain assumptions. These results provided the fundamental ideas used in communication protocols for networks with delayed channel state information. However, to the best of our knowledge, the capacity region of erasure broadcast channels with feedback and with a common message for both receivers has never been presented. This latter problem shows up as a sub-problem in many multi-terminal communication networks such as the X-Channel, and the two-unicast problem. In this work, we present the capacity region of the two-user erasure broadcast channels with delayed feedback, private messages, and a common message. We consider arbitrary and possibly correlated erasure distributions. We develop new outer-bounds that capture feedback and quantify the impact of delivering a common message on the capacity region. We also propose a transmission strategy that achieves the outer-bounds. Our transmission strategy differs from prior results in that to achieve the capacity, it creates side-information at the weaker user such that the decodability is ensured even if we multicast the common message with a rate higher than its link capacity.
In this paper, we study the fundamental limits of simultaneous information and power transfer over a Rayleigh fading channel, where the channel input is constrained to peak-power constraints that vary in each channel use by taking into account high-power amplifier nonlinearities. In particular, a three-party communication system is considered, where a transmitter aims simultaneously conveying information to an information receiver and delivering energy to an energy harvesting receiver. For the special case of static PP constraints, we study the information-energy capacity region and the associated input distribution under: average-power and PP constraints at the transmitter, an HPA nonlinearity at the transmitter, and nonlinearity of the energy harvesting circuit at the energy receiver. By extending Smith mathematical framework, we show that the optimal input distribution under those constraints is discrete with a finite number of mass points. We show that HPA significantly reduces the information energy capacity region. In addition, we derive a closed-form expression of the capacity achieving distribution for the low PP regime, where there is no trade-off between information and energy transfer. For the case with time-varying PP constraints, we prove that the optimal input distribution has a finite support by using Shannons coding scheme. Specifically, we numerically study a particular scenario for the time-varying PP constraints, where the PP constraint probabilistically is either zero or equal to a non-zero constant.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا