Do you want to publish a course? Click here

Excitation of higher-order modes in optofluidic photonic crystal fiber

106   0   0.0 ( 0 )
 Added by Tijmen Euser
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Higher-order modes up to LP$_{33}$ are controllably excited in water-filled kagom{e}- and bandgap-style hollow-core photonic crystal fibers (HC-PCF). A spatial light modulator is used to create amplitude and phase distributions that closely match those of the fiber modes, resulting in typical launch efficiencies of 10-20% into the liquid-filled core. Modes, excited across the visible wavelength range, closely resemble those observed in air-filled kagom{e} HC-PCF and match numerical simulations. Mode indices are obtained by launching plane-waves at specific angles onto the fiber input-face and comparing the resulting intensity pattern to that of a particular mode. These results provide a framework for spatially-resolved sensing in HC-PCF microreactors and fiber-based optical manipulation.



rate research

Read More

Optimum suppression of higher order modes in single-ring hollow-core photonic crystal fibers (SR-PCFs) occurs when the capillary-to-core diameter ratio d/D = 0.68. Here we report that, in SR-PCFs with sub-optimal values of d/D, higher-order mode suppression can be recovered by spinning the preform during fiber drawing, thus introducing a continuous helical twist. This geometrically increases the effective axial propagation constant (initially too low) of the LP01-like modes of the capillaries surrounding the core, enabling robust single-mode operation. The effect is explored by means of extensive numerical modeling, an analytical model and a series of experiments. Prism-assisted side-coupling is used to investigate the losses and near-field patterns of individual fiber modes in both the straight and twisted cases. More than 12 dB/m improvement in higher order mode suppression is achieved experimentally in a twisted PCF. The measurements also show that the higher order mode profiles change with twist rate, as predicted by numerical simulations. Helical twisting offers an additional tool for achieving effectively endlessly single-mode operation in hollow-core SR-PCFs.
We demonstrate experimentally and theoretically that a nanoscale hollow channel placed centrally in the solid glass core of a photonic crystal fiber strongly enhances the cylindrical birefringence (the modal index difference between radially and azimuthally polarized modes). Furthermore, it causes a large split in group velocity and group velocity dispersion. We show analytically that all three parameters can be varied over a wide range by tuning the diameters of the nanobore and the core.
379 - David Elvira , V. Verma 2011
We report on the higher-order photon correlations of a high-$beta$ nanolaser under pulsed excitation at room temperature. Using a multiplexed four-element superconducting single photon detector we measured g$^{(n)}(vec{0})$ with $n$=2,3,4. All orders of correlation display partially chaotic statistics, even at four times the threshold excitation power. We show that this departure from coherence and Poisson statistics is due to the quantum fluctuations associated with the small number of dipoles and photons involved in the lasing process.
This article offers an extensive survey of results obtained using hybrid photonic crystal fibers (PCFs) which constitute one of the most active research fields in contemporary fiber optics. The ability to integrate novel and functional materials in solid- and hollow-core PCFs through various post-processing methods has enabled new directions towards understanding fundamental linear and nonlinear phenomena as well as novel application aspects, within the fields of optoelectronics, material and laser science, remote sensing and spectroscopy. Here the recent progress in the field of hybrid PCFs is reviewed from scientific and technological perspectives, focusing on how different fluids, solids and gases can significantly extend the functionality of PCFs. In the first part of this review we discuss the most important efforts by research groups around the globe to develop tunable linear and nonlinear fiber-optic devices using PCFs infiltrated with various liquids, glasses, semiconductors and metals. The second part is concentrated on the most recent and state-of-the-art advances in the field of gas-filled hollow-core PCFs. Extreme ultrafast gas-based nonlinear optics towards light generation in the extreme wavelength regions of vacuum ultraviolet (VUV), pulse propagation and compression dynamics in both atomic and molecular gases, and novel soliton - plasma interactions are reviewed. A discussion of future prospects and directions is also included.
204 - S. Davtyan , Y. Chen , M. H. Frosz 2020
The unique ring-shaped intensity patterns and helical phase fronts of optical vortices make them useful in many applications. Here we report for the first time efficient Raman frequency conversion between vortex modes in twisted hydrogen-filled single-ring hollow core photonic crystal fiber (SR-PCF). High fidelity transmission of optical vortices in untwisted SR-PCF becomes more and more difficult as the orbital angular momentum (OAM) order increases, due to scattering at structural imperfections in the fiber microstructure. In helically twisted SR-PCF, however, the degeneracy between left- and right-hand
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا