No Arabic abstract
The unique ring-shaped intensity patterns and helical phase fronts of optical vortices make them useful in many applications. Here we report for the first time efficient Raman frequency conversion between vortex modes in twisted hydrogen-filled single-ring hollow core photonic crystal fiber (SR-PCF). High fidelity transmission of optical vortices in untwisted SR-PCF becomes more and more difficult as the orbital angular momentum (OAM) order increases, due to scattering at structural imperfections in the fiber microstructure. In helically twisted SR-PCF, however, the degeneracy between left- and right-hand
Broadband-tunable sources of circularly-polarized light are crucial in fields such as laser science, biomedicine and spectroscopy. Conventional sources rely on nonlinear wavelength conversion and polarization control using standard optical components, and are limited by the availability of suitably transparent crystals and glasses. Although gas-filled hollow-core photonic crystal fiber provides pressure-tunable dispersion, long well-controlled optical path-lengths, and high Raman conversion efficiency, it is unable to preserve circular polarization state, typically exhibiting weak linear birefringence. Here we report a revolutionary approach based on helically-twisted hollow-core photonic crystal fiber, which displays circular birefringence, thus robustly maintaining circular polarization state against external perturbations. This makes it possible to generate pure circularly-polarized Stokes and anti-Stokes signals by rotational Raman scattering in hydrogen. The polarization state of the frequency-shifted Raman bands can be continuously varied by tuning the gas pressure in the vicinity of the gain suppression point. The results pave the way to a new generation of compact and efficient fiber-based sources of broadband light with fully-controllable polarization state.
Many fields such as bio-spectroscopy and photochemistry often require sources of vacuum ultraviolet (VUV) pulses featuring a narrow linewidth and tunable over a wide frequency range. However, the majority of available VUV light sources do not simultaneously fulfill those two requirements, and few if any are truly compact, cost-effective and easy to use by non-specialists. Here we introduce a novel approach that goes a long way to meeting this challenge. It is based on hydrogen-filled hollow-core photonic crystal fiber pumped simultaneously by two spectrally distant pulses. Stimulated Raman scattering enables the generation of coherence waves of collective molecular motion in the gas, which together with careful dispersion engineering and control over the modal content of the pump light, facilitates cooperation between the two separate Raman combs, resulting in a spectrum that reaches deep into the VUV. Using this system, we demonstrate the generation of a dual Raman comb of narrowband lines extending down to 141 nm using only 100 mW of input power delivered by a commercial solid-state laser. The approach may enable access to tunable VUV light to any laboratory and therefore boost progress in many research areas across multiple disciplines.
We present the use of linearly down-tapered gas-filled hollow-core photonic crystal fiber in a single-stage, pumped with pulses from a compact infrared laser source, to generate a supercontinuum carrying significant spectral power in the deep ultraviolet (200 - 300 nm). The generated supercontinuum extends from the near infrared down to around 213 nm with up to 0.83 mW/nm in the deep ultraviolet.
We report the generation of a purely vibrational Raman comb, extending from the vacuum ultraviolet (184 nm) to the visible (478 nm), in hydrogen-filled kagome-style photonic crystal fiber pumped at 266 nm. Stimulated Raman scattering and molecular modulation processes are enhanced by higher Raman gain in the ultraviolet. Owing to the pressure-tunable normal dispersion landscape of the fiber-gas system in the ultraviolet, higher-order anti-Stokes bands are generated preferentially in higher-order fiber modes. The results pave the way towards tunable fiber-based sources of deep- and vacuum ultraviolet light for applications in, e.g., spectroscopy and biomedicine.
We present a pump-probe technique for monitoring ultrafast polarizability changes. In particular, we use it to measure the plasma density created at the temporal focus of a self-compressing higher-order pump soliton in gas-filled hollow-core photonic crystal fiber. This is done by monitoring the wavelength of the dispersive wave emission from a counter-propagating probe soliton. By varying the relative delay between pump and probe, the plasma density distribution along the fiber can be mapped out. Compared to the recently introduced interferometric side-probing for monitoring the plasma density, our new technique is relatively immune to instabilities caused by air turbulence and mechanical vibration. The results of two experiments on argon- and krypton-filled fiber are presented, and compared to numerical simulations. The technique provides an important new tool for probing photoionization in many different gases and gas mixtures as well as ultrafast changes in dispersion in many other contexts.