Do you want to publish a course? Click here

Tilt of sunspot bipoles in Solar Cycles 15 to 24

104   0   0.0 ( 0 )
 Added by Alexei Pevtsov
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use recently digitized sunspot drawings from Mount Wilson Observatory to investigate the latitudinal dependence of tilt angles of active regions and its change with solar cycle. The drawings cover the period from 1917 to present and contain information about polarity and strength of magnetic field in sunspots. We identify clusters of sunspots of same polarity, and used these clusters to form ``bipole pairs. The orientation of these bipole pairs was used to measure their tilts. We find that the latitudinal profile of tilts does not monotonically increase with latitude as most previous studies assumed, but instead, it shows a clear maximum at about 25--30 degree latitudes. Functional dependence of tilt ($gamma$) on latitude ($varphi$) was found to be $gamma = (0.20pm 0.08) sin (2.80 varphi) + (-0.00pm 0.06)$. We also find that latitudinal dependence of tilts varies from one solar cycle to another, but larger tilts do not seem to result in stronger solar cycles. Finally, we find the presence of a systematic offset in tilt of active regions (non-zero tilts at the equator), with odd cycles exhibiting negative offset and even cycles showing the positive offset.



rate research

Read More

To better understand the influence of the activity cycle on the solar atmosphere, we report the time variation of the radius observed at 37 GHz ($lambda$=8.1 mm) obtained by the Metsahovi Radio Observatory (MRO) through Solar Cycles 22 to 24 (1989-2015). Almost 5800 maps were analyzed, however, due to instrumental setups changes the data set showed four distinct behaviors, which requested a normalisation process to allow the whole interval analysis. When the whole period was considered, the results showed a positive correlation index of 0.17 between the monthly means of the solar radius at 37 GHz and solar flux obtained at 10.7 cm (F10.7). This correlation index increased to 0.44, when only the data obtained during the last period without instrumental changes were considered (1999-2015). The solar radius correlation with the solar cycle agrees with the previous results obtained at mm/cm wavelengths (17 and 48 GHz), nevertheless, this result is the opposite of that reported at submillimetre wavelengths (212 and 405 GHz).
108 - S.-S. Wu , G. Qin 2021
The prediction of solar activity is important for advanced technologies and space activities. The peak sunspot number (SSN), which can represent the solar activity, has declined continuously in the past four solar cycles (21$-$24), and the Sun would experience a Dalton-like minimum, or even the Maunder-like minimum, if the declining trend continues in the following several cycles, so that the predictions of solar activity for cycles 25 and 26 are crucial. In Qin & Wu, 2018, ApJ, we established an SSN prediction model denoted as two-parameter modified logistic prediction (TMLP) model, which can predict the variation of SSNs in a solar cycle if the start time of the cycle has been determined. In this work, we obtain a new model denoted as TMLP-extension (TMLP-E). If the start time of a cycle $n$ is already known, TMLP-E can predict the variation of SSNs in the cycle $n+1$. Cycle 25 is believed to start in December 2019, so that the predictions of cycles 25 and 26 can be made with our models. It is found that the predicted solar maximum, ascent time, and cycle length are 115.1, 4.84 yr, and 11.06 yr, respectively, for cycle 25, and 107.3, 4.80 yr, and 10.97 yr, respectively, for cycle 26. The solar activities of cycles 25 and 26 are predicted to be at the same level as that of cycle 24, but will not decrease further. We therefore suggest that the cycles 24$-$26 are at a minimum of Gleissberg cycle.
Here we analyze solar activity by focusing on time variations of the number of sunspot groups (SGs) as a function of their modified Zurich class. We analyzed data for solar cycles 2023 by using Rome (cycles 2021) and Learmonth Solar Observatory (cycles 2223) SG numbers. All SGs recorded during these time intervals were separated into two groups. The first group includes small SGs (A, B, C, H, and J classes by Zurich classification) and the second group consists of large SGs (D, E, F, and G classes). We then calculated small and large SG numbers from their daily mean numbers as observed on the solar disk during a given month. We report that the time variations of small and large SG numbers are asymmetric except for the solar cycle 22. In general large SG numbers appear to reach their maximum in the middle of the solar cycle (phase 0.450.5), while the international sunspot numbers and the small SG numbers generally peak much earlier (solar cycle phase 0.290.35). Moreover, the 10.7 cm solar radio flux, the facular area, and the maximum CME speed show better agreement with the large SG numbers than they do with the small SG numbers. Our results suggest that the large SG numbers are more likely to shed light on solar activity and its geophysical implications. Our findings may also influence our understanding of long term variations of the total solar irradiance, which is thought to be an important factor in the Sun - Earth climate relationship.
We report on a comparison of the expansion speeds of limb coronal mass ejections (CMEs) between solar cycles 23 and 24. We selected a large number of limb CME events associated with soft X-ray flare size greater than or equal to M1.0 from both cycles. We used data and measurement tools available at the online CME catalog (https://cdaw.gsfc.nasa.gov) that consists of the properties of all CMEs detected by the Solar and Heliospheric Observatorys (SOHO) Large Angle and Spectrometric Coronagraph (LASCO). We found that the expansion speeds in cycle 24 are higher than those in cycle 23. We also found that the relation between radial and expansion speeds has different slopes in cycles 23 and 24. The cycle 24 slope is 45% higher than that in cycle 23. The expansion speed is also higher for a given radial speed. The difference increases with speed. For a 2000 km/s radial speed, the expansion speed in cycle 24 is ~48% higher. These results present additional evidence for the anomalous expansion of cycle 24-CMEs, which is due to the reduced total pressure in the heliosphere.
139 - V. Pant , R. Majumdar , R. Patel 2021
Coronal Mass Ejections (CMEs) are highly dynamic events originating in the solar atmosphere, that show a wide range of kinematic properties and are the major drivers of the space weather. The angular width of the CMEs is a crucial parameter in the study of their kinematics. The fact that whether slow and fast CMEs (as based on their relative speed to the average solar wind speed) are associated with different processes at the location of their ejection is still debatable. Thus, in this study, we investigate their angular width to understand the differences between the slow and fast CMEs. We study the width distribution of slow and fast CMEs and find that they follow different power law distributions, with a power law indices ($alpha$) of -1.1 and -3.7 for fast and slow CMEs respectively. To reduce the projection effects, we further restrict our analysis to only limb events as derived from manual catalog and we find similar results. We then associate the slow and fast CMEs to their source regions, and classified the sources as Active Regions (ARs) and Prominence Eruptions (PEs). We find that slow and fast CMEs coming from ARs and PEs, also follow different power laws in their width distributions. This clearly hints towards a possibility that different mechanisms might be involved in the width expansion of slow and fast CMEs coming from different sources.These results are also crucial from the space weather perspective since the width of the CME is an important factor in that aspect.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا