Do you want to publish a course? Click here

Investigating width distribution of slow and fast CMEs in solar cycles 23 and 24

140   0   0.0 ( 0 )
 Added by Vaibhav Pant
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Coronal Mass Ejections (CMEs) are highly dynamic events originating in the solar atmosphere, that show a wide range of kinematic properties and are the major drivers of the space weather. The angular width of the CMEs is a crucial parameter in the study of their kinematics. The fact that whether slow and fast CMEs (as based on their relative speed to the average solar wind speed) are associated with different processes at the location of their ejection is still debatable. Thus, in this study, we investigate their angular width to understand the differences between the slow and fast CMEs. We study the width distribution of slow and fast CMEs and find that they follow different power law distributions, with a power law indices ($alpha$) of -1.1 and -3.7 for fast and slow CMEs respectively. To reduce the projection effects, we further restrict our analysis to only limb events as derived from manual catalog and we find similar results. We then associate the slow and fast CMEs to their source regions, and classified the sources as Active Regions (ARs) and Prominence Eruptions (PEs). We find that slow and fast CMEs coming from ARs and PEs, also follow different power laws in their width distributions. This clearly hints towards a possibility that different mechanisms might be involved in the width expansion of slow and fast CMEs coming from different sources.These results are also crucial from the space weather perspective since the width of the CME is an important factor in that aspect.



rate research

Read More

We report on a comparison of the expansion speeds of limb coronal mass ejections (CMEs) between solar cycles 23 and 24. We selected a large number of limb CME events associated with soft X-ray flare size greater than or equal to M1.0 from both cycles. We used data and measurement tools available at the online CME catalog (https://cdaw.gsfc.nasa.gov) that consists of the properties of all CMEs detected by the Solar and Heliospheric Observatorys (SOHO) Large Angle and Spectrometric Coronagraph (LASCO). We found that the expansion speeds in cycle 24 are higher than those in cycle 23. We also found that the relation between radial and expansion speeds has different slopes in cycles 23 and 24. The cycle 24 slope is 45% higher than that in cycle 23. The expansion speed is also higher for a given radial speed. The difference increases with speed. For a 2000 km/s radial speed, the expansion speed in cycle 24 is ~48% higher. These results present additional evidence for the anomalous expansion of cycle 24-CMEs, which is due to the reduced total pressure in the heliosphere.
81 - Mykola I. Pishkalo 2019
The Suns polar magnetic fields change their polarity near the maximum of sunspot activity. We analyzed the polarity reversal epochs in Solar Cycles 21 to 24. There was a triple reversal in the N-hemisphere in Solar Cycle 24 and single reversals in the rest of cases. Epochs of the polarity reversal from measurements of the Wilcox Solar Observatory (WSO) are compared with ones when the reversals were completed in the N- and S-hemispheres. The reversal times were compared with hemispherical sunspot activity and with the Heliospheric Current Sheet (HCS) tilts, too. It was found that reversals occurred at the epoch of the sunspot activity maximum in Cycles 21 and 23, and after the corresponding maxima in Cycles 22 and 24, and one-two years after maximal HCS tilts calculated in WSO. Reversals in Solar Cycles 21, 22, 23, and 24 were completed first in the N-hemisphere and then in the S-hemisphere after 0.6, 1.1, 0.7, and 0.9 years, respectively. The polarity inversion in the near-polar latitude range pm(55-90)^circ occurred from 0.5 to 2.0 years earlier that the times when the reversals were completed in corresponding hemisphere. Using the maximal smoothed WSO polar field as precursor we estimated that amplitude of Solar Cycle 25 will reach 116 pm 12 in values of smoothed monthly sunspot numbers and will be comparable with the current cycle amplitude equaled to 116.4.
We study the clustering properties of fast Coronal Mass Ejections (CMEs) that occurred during solar cycles 23 and 24. We apply two methods: the Max spectrum method can detect the predominant clusters and the de-clustering threshold time method provides details on the typical clustering properties and time scales. Our analysis shows that during the different phases of solar cycles 23 and 24, CMEs with speed $geq 1000 km/s$ preferentially occur as isolated events and in clusters with on average two members. However, clusters with more members appear particularly during the maximum phases of the solar cycles. Over the total period and in the maximum phases of solar cycles 23 and 24, about 50% are isolated events, 18% (12%) occur in clusters with 2 (3) members, and another 20% in larger clusters $geq 4$, whereas in solar minimum fast CMEs tend to occur more frequently as isolated events (62%). During different solar cycle phases, the typical de-clustering time scales of fast CMEs are $tau_c=28-32 hrs$, irrespective of the very different occurrence frequencies of CMEs during solar minimum and maximum. These findings suggest that $tau_c$ for extreme events may reflect the characteristic energy build-up time for large flare and CME-prolific active ARs. Associating statistically the clustering properties of fast CMEs with the Disturbance storm index Dst at Earth suggests that fast CMEs occuring in clusters tend to produce larger geomagnetic storms than isolated fast CMEs. This may be related to CME-CME interaction producing a more complex and stronger interaction with the Earth magnetosphere.
We report the temporal evolution of the excess brightness temperature above solar active regions (ARs) observed with the Solar Submillimeter Telescope (SST) at 212 ({lambda} = 1.4 mm) and 405 GHz ({lambda} = 0.7 mm) during Cycles 23 and 24. Comparison with the sunspot number (SSN) yields a Pearsons correlation coefficient R = 0.88 and 0.74 for 212 and 405 GHz, respectively. Moreover, when only Cycle 24 is taken into account the correlation coefficients go to 0.93 and 0.81 for each frequency. We derive the spectral index {alpha} between SST frequencies and found a slight anti-correlation with the SSN (R = -0.25); however, since the amplitude of the variation is lower than the standard deviation we cannot draw a definite conclusion. Indeed, {alpha} remains almost constant within the uncertainties with a median value approximate to 0 characteristic of an optically thick thermal source. Since the origin of the AR submillimeter radiation is thermal continuum produced at chromospheric heights, the strong correlation between the excess brightness temperature and the magnetic cycle evolution could be related to the available free magnetic energy to be released in reconnection events.
We investigate the characteristics and the sources of the slow (< 450 km/s) solar wind during the four years (2006-2009) of low solar activity between Solar Cycles 23 and 24. We use a comprehensive set of in-situ observations in the near-Earth solar wind (Wind and ACE) and remove the periods when large-scale interplanetary coronal mass ejections were present. The investigated period features significant variations in the global coronal structure, including the frequent presence of low-latitude active regions in 2006-2007, long-lived low- and mid-latitude coronal holes in 2006 - mid-2008 and mostly the quiet Sun in 2009. We examine both Carrington Rotation averages of selected solar plasma, charge state and compositional parameters and distributions of these parameters related to Quiet Sun, Active Region Sun and the Coronal Hole Sun. While some of the investigated parameters (e.g., speed, the C^{+6}/C^{+4} and He/H ratio) show clear variations over our study period and with solar wind source type, some (Fe/O) exhibit very little changes. Our results highlight the difficulty in distinguishing between the slow solar wind sources based on the inspection of the solar wind conditions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا