No Arabic abstract
We present a high resolution method for measuring magnetostriction in millisecond pulsed magnetic fields at cryogenic temperatures with a sensitivity of $1.11times10^{-11}/sqrt{rm Hz}$. The sample is bonded to a thin piezoelectric plate, such that when the samples length changes, it strains the piezoelectric and induces a voltage change. This method is more sensitive than a fiber-Bragg grating method. It measures two axes simultaneously instead of one. The gauge is small and versatile, functioning in DC and millisecond pulsed magnetic fields. We demonstrate its use by measuring the magnetostriction of Ca$_3$Co$_{1.03}$Mn$_{0.97}$O$_6$ single crystals in pulsed magnetic fields. By comparing our data to new and previously published results from a fiber-Bragg grating magnetostriction setup, we confirm that this method detects magnetostriction effects. We also demonstrate the small size and versatility of this technique by measuring angle dependence with respect to the applied magnetic field in a rotator probe in 65 T millisecond pulsed magnetic fields.
We report on a new high resolution apparatus for measuring magnetostriction suitable for use at cryogenic temperatures in pulsed high magnetic fields which we have developed at the Hochfeld-Magnetlabor Dresden. Optical fibre strain gauges based on Fibre Bragg Gratings are used to measure the strain in small (~1mm) samples. We describe the implementation of a fast measurement system capable of resolving strains in the order of $10^{-7}$ with a full bandwidth of 47kHz, and demonstrate its use on single crystal samples of GdSb and GdSi.
Spintronic devices based on antiferromagnetic (AFM) materials hold the promise of fast switching speeds and robustness against magnetic fields. Different device concepts have been predicted and experimentally demonstrated, such as low-temperature AFM tunnel junctions that operate as spin-valves, or room-temperature AFM memory, for which either thermal heating in combination with magnetic fields, or Neel spin-orbit torque is used for the information writing process. On the other hand, piezoelectric materials were employed to control magnetism by electric fields in multiferroic heterostructures, which suppresses Joule heating caused by switching currents and may enable low energy-consuming electronic devices. Here, we combine the two material classes to explore changes of the resistance of the high-Neel-temperature antiferromagnet MnPt induced by piezoelectric strain. We find two non-volatile resistance states at room temperature and zero electric field, which are stable in magnetic fields up to 60 T. Furthermore, the strain-induced resistance switching process is insensitive to magnetic fields. Integration in a tunnel junction can further amplify the electroresistance. The tunneling anisotropic magnetoresistance reaches ~11.2% at room temperature. Overall, we demonstrate a piezoelectric, strain-controlled AFM memory which is fully operational in strong magnetic fields and has potential for low-energy and high-density memory applications.
In the scientific description of unconventional transport properties of oxides (spin-dependent transport, superconductivity etc.), the spin-state degree of freedom plays a fundamental role. Because of this, temperature- or magnetic field-induced spin-state transitions are in the focus of solid-state physics. Cobaltites, e.g. LaCoO3, are prominent examples showing these spin transitions. However, the microscopic nature of the spontaneous spin crossover in LaCoO3 is still controversial. Here we report magnetostriction measurements on LaCoO3 in magnetic fields up to 70 T to study the sharp, field-induced transition at Hc ~ 60 T. Measurements of both longitudinal and transversal magnetostriction allow us to separate magnetovolume and magnetodistortive changes. We find a large increase in volume, but only a very small increase in tetragonal distortion at Hc. The results, supported by electronic energy calculations by the configuration interaction cluster method, provide compelling evidence that above Hc LaCoO3 adopts a correlated low spin/high spin state.
High-resolution magnetostriction measurement of $Delta L/Lsim10^{-6}$ at a speed of 5 MHz is performed, using optical filter method as the detection scheme for the fiber Bragg grating (FBG) based strain monitor is performed under 35-millisecond pulsed high magnetic fields up to 45 T at 2.2 K. The resolution of magnetostriction is about the same order as the conventionally reported value from FBG based magnetostriction measurement systems for millisecond pulsed magnetic fields. The measurement speed is $sim$100 times the conventional ones. Present system can be a faster alternative for the conventional FBG based magnetostriction measurement system for millisecond pulsed high magnetic fields.
A high-speed 100 MHz strain monitor using a fiber Bragg grating, an optical filter, and a mode-locked optical fiber laser has been devised, which has a resolution of $Delta L/Lsim10^{-4}$. The strain monitor is sufficiently fast and robust for the magnetostriction measurements of magnetic materials under ultrahigh magnetic fields generated with destructive pulse magnets, where the sweep rate is in the range of 10-100 T/$mu$s. As a working example, the magnetostriction of LaCoO$_{3}$ was measured at room temperature, 115 K, and 7$sim$4.2 K up to a maximum magnetic field of 150 T. The smooth $B^{2}$ dependence and the first-order transition were observed at 115 K and 7$sim$4.2 K, respectively, reflecting the field-induced spin-state evolution.