Do you want to publish a course? Click here

The Molecular and Ionized Gas Phases of an AGN-driven Outflow in a Typical Massive Galaxy at z=2

105   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nuclear outflows driven by accreting massive black holes are one of the main feedback mechanisms invoked at high-z to reproduce the distinct separation between star-forming, disk galaxies and quiescent spheroidal systems. Yet, our knowledge of feedback at high-z remains limited by the lack of observations of the multiple gas phases in galaxy outflows. In this work we use new deep, high-spatial resolution ALMA CO(3-2) and archival VLT/SINFONI H$alpha$ observations to study the molecular and ionized components of the AGN-driven outflow in zC400528 ---a massive, main sequence galaxy at z=2.3 in the process of quenching. We detect a powerful molecular outflow that shows a positive velocity gradient and extends for at least ~10 kpc from the nuclear region, about three times the projected size of the ionized wind. The molecular gas in the outflow does not reach velocities high enough to escape the galaxy and is therefore expected to be reaccreted. Keeping in mind the various assumptions involved in the analysis, we find that the mass and energetics of the outflow are dominated by the molecular phase. The AGN-driven outflow in zC400528 is powerful enough to deplete the molecular gas reservoir on a timescale at least twice shorter than that needed to exhaust it by star formation. This suggests that the nuclear outflow is one of the main quenching engines at work in the observed suppression of the central star-formation activity in zC400528.



rate research

Read More

In order to construct a sample of ultra-luminous infrared galaxies (ULIRGs, with infrared luminosity, $L_{rm IR} > 10^{12}$ L$_{odot}$) at 0.5 < z < 1, we are conducting an optical follow-up program for bright 90-$mu$m FIR sources with a faint optical (i < 20) counterpart selected in the AKARI Far-Infrared Surveyor (FIS) Bright Source catalog (Ver.2). AKARI-FIS-V2 J0916248+073034, identified as a ULIRG at z = 0.49 in the spectroscopic follow-up observation, indicates signatures of an extremely strong outflow in its emission line profiles. Its [OIII] 5007AA emission line shows FWHM of 1830 km s$^{-1}$ and velocity shift of -770 km s$^{-1}$ in relative to the stellar absorption lines. Furthermore, low-ionization [OII] 3726AA 3729AA doublet also shows large FWHM of 910 km s$^{-1}$ and velocity shift of -380 km s$^{-1}$. After the removal of an unresolved nuclear component, the long-slit spectroscopy 2D image possibly shows that the outflow extends to radius of 4 kpc. The mass outflow and energy ejection rates are estimated to be 500 M$_{odot}$ yr$^{-1}$ and $4times10^{44}$ erg s$^{-1}$, respectively, which imply that the outflow is among the most powerful ones observed in ULIRGs and QSOs at 0.3 < z < 1.6. The co-existence of the strong outflow and intense star formation (star formation rate of 990 M$_{odot}$ yr$^{-1}$) indicates that the feedback of the strong outflow has not severely affect the star-forming region of the galaxy.
We report the discovery of an infrared (IR)-bright dust-obscured galaxy (DOG) that shows a strong ionized-gas outflow but no significant molecular gas outflow. Based on detail analysis of their optical spectra, we found some peculiar IR-bright DOGs that show strong ionized-gas outflow ([OIII]$lambda$5007) from the central active galactic nucleus (AGN). For one of these DOGs (WISE J102905.90+050132.4) at $z_{rm spec} = 0.493$, we performed follow-up observations using ALMA to investigate their CO molecular gas properties. As a result, we successfully detected $^{12}$CO($J$=2-1) and $^{12}$CO($J$=4-3) lines, and the continuum of this DOG. The intensity-weighted velocity map of both lines shows a gradient, and the line profile of those CO lines is well-fitted by a single narrow Gaussian, meaning that this DOG has no sign of strong molecular gas outflow. The IR luminosity of this object is $log,(L_{rm IR}/L_{odot})$ = 12.40 that is classified as ultraluminous IR galaxy (ULIRG). We found that (i) the stellar mass and star-formation rate relation and (ii) the CO luminosity and far-IR luminosity relation are consistent with those of typical ULIRGs at similar redshifts. These results indicate that the molecular gas properties of this DOG are normal despite that its optical spectrum showing a powerful AGN outflow. We conclude that a powerful ionized-gas outflow caused by the AGN does not necessarily affect the cold interstellar medium in the host galaxy at least for this DOG.
BOSS-EUVLG1 is the most ultraviolet (UV) and Ly$alpha$ luminous galaxy detected so far in the Universe, going through a very active starburst phase, and forming stars at a rate (SFR) of 955 $pm$ 118 M$_{odot}$ yr$^{-1}$. We report the detection of a broad H$alpha$ component carrying 25% of the total H$alpha$ flux. The broad H$alpha$ line traces a fast and massive ionized gas outflow characterized by a total mass, $log(M_{out}[M_{odot}]),$ of 7.94 $pm$ 0.15, an outflowing velocity (V$_{out}$) of 573 $pm$ 151 km s$^{-1}$, and an outflowing mass rate ($dot{M}_{out}$) of 44 $pm$ 20 M$_{odot}$ yr$^{-1}$. The presence of the outflow in BOSS-EUVLG1 is also supported by the identification of blueshifted UV absorption lines in low and high ionization states. The energy involved in the H$alpha$ outflow can be explained by the ongoing star formation without the need for an Active Galactic Nucleus. The derived low mass loading factor ($eta$= 0.05 $pm$ 0.03) indicates that although massive, this phase of the outflow can not be relevant for the quenching of the star formation. In addition, only a small fraction ($leq$ 15%) of the ionized outflowing material with velocities above 372 km s$^{-1}$ could escape the gravitational potential, and enrich the surrounding circum-galactic medium at distances above tens of kpc. The ionized phase of the outflow does not carry the mass and energy to play a relevant role neither in the evolution of the host galaxy nor in the enrichment of the intergalactic medium. Other phases of the outflow could be carrying most of the outflow energy and mass in the form of hot X-ray emitting gas as predicted by some recent simulations. The expected emission of the extended X-ray emitting halo associated with the outflow in BOSS-EUVLG1 and similar galaxies could be detected with the future X-ray observatory, {it ATHENA} but could not be resolved spatially.
We present deep observations of a $z=1.4$ massive, star-forming galaxy in molecular and ionized gas at comparable spatial resolution (CO 3-2, NOEMA; H$alpha$, LBT). The kinematic tracers agree well, indicating that both gas phases are subject to the same gravitational potential and physical processes affecting the gas dynamics. We combine the one-dimensional velocity and velocity dispersion profiles in CO and H$alpha$ to forward-model the galaxy in a Bayesian framework, combining a thick exponential disk, a bulge, and a dark matter halo. We determine the dynamical support due to baryons and dark matter, and find a dark matter fraction within one effective radius of $f_{rm DM}(leq$$R_{e})=0.18^{+0.06}_{-0.04}$. Our result strengthens the evidence for strong baryon-dominance on galactic scales of massive $zsim1-3$ star-forming galaxies recently found based on ionized gas kinematics alone.
54 - Qiana Hunt 2018
The process by which massive galaxies transition from blue, star-forming disks into red, quiescent galaxies remains one of the most poorly-understood aspects of galaxy evolution. In this investigation, we attempt to gain a better understanding of how star formation is quenched by focusing on a massive post-starburst galaxy at z = 0.747. The target has a high stellar mass and a molecular gas fraction of ~30% -- unusually high for its low star formation rate. We look for indicators of star formation suppression mechanisms in the stellar kinematics and age distribution of the galaxy obtained from spatially resolved Gemini Integral-Field spectra and in the gas kinematics obtained from ALMA. We find evidence of significant rotation in the stars, but we do not detect a stellar age gradient within 5 kpc. The molecular gas is aligned with the stellar component, and we see no evidence of strong gas outflows. Our target may represent the product of a merger-induced starburst or of morphological quenching; however, our results are not completely consistent with any of the prominent quenching models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا