No Arabic abstract
The process by which massive galaxies transition from blue, star-forming disks into red, quiescent galaxies remains one of the most poorly-understood aspects of galaxy evolution. In this investigation, we attempt to gain a better understanding of how star formation is quenched by focusing on a massive post-starburst galaxy at z = 0.747. The target has a high stellar mass and a molecular gas fraction of ~30% -- unusually high for its low star formation rate. We look for indicators of star formation suppression mechanisms in the stellar kinematics and age distribution of the galaxy obtained from spatially resolved Gemini Integral-Field spectra and in the gas kinematics obtained from ALMA. We find evidence of significant rotation in the stars, but we do not detect a stellar age gradient within 5 kpc. The molecular gas is aligned with the stellar component, and we see no evidence of strong gas outflows. Our target may represent the product of a merger-induced starburst or of morphological quenching; however, our results are not completely consistent with any of the prominent quenching models.
In this letter, we reconstruct the formation pathway of MRG-S0851, a massive, $log M_*/M_odot=11.02pm0.04$, strongly lensed, red, galaxy at $z=1.883pm0.001$. While the global photometry and spatially-resolved outskirts of MRG-S0851 imply an early-formation scenario with a slowly decreasing or constant star-formation history, a joint fit of 2D grism spectroscopy and photometry reveals a more complex scenario: MRG-S0851 is likely to be experiencing a centrally-concentrated rejuvenation in the inner $sim$1 kpc in the last $sim$100 Myr of evolution. We estimate $0.5pm0.1%$ of the total stellar mass is formed in this phase. Rejuvenation episodes are suggested to be infrequent for massive galaxies at $zsim2$, but as our analyses indicate, more examples of complex star-formation histories may yet be hidden within existing data. By adding a FUV color criterion to the standard U-V/V-J diagnostic, thereby heightening our sensitivity to recent star formation, we show that we can select populations of galaxies with similar spectral energy distributions to that of MRG-S0851, but note that deep follow-up spectroscopic observations and/or spatially resolved analyses are necessary to robustly confirm the rejuvenation of these candidates. Using our criteria with MRG-S0851 as a prototype, we estimate that $sim$1% of massive quiescent galaxies at $1<z<2$ are potentially rejuvenating.
Most molecular gas studies of $z > 2.5$ galaxies are of intrinsically bright objects, despite the galaxy population being primarily normal galaxies with less extreme star formation rates. Observations of normal galaxies at high redshift provide a more representative view of galaxy evolution and star formation, but such observations are challenging to obtain. In this work, we present ALMA $rm ^{12}CO(J = 3 rightarrow 2)$ observations of a sub-millimeter selected galaxy group at $z = 2.9$, resulting in spectroscopic confirmation of seven images from four member galaxies. These galaxies are strongly lensed by the MS 0451.6-0305 foreground cluster at $z = 0.55$, allowing us to probe the molecular gas content on levels of $rm 10^9-10^{10} ; M_odot$. Four detected galaxies have molecular gas masses of $rm (0.2-13.1) times 10^{10} ; M_odot$, and the non-detected galaxies have inferred molecular gas masses of $rm < 8.0 times 10^{10} ; M_odot$. We compare these new data to a compilation of 546 galaxies up to $z = 5.3$, and find that depletion times decrease with increasing redshift. We then compare the depletion times of galaxies in overdense environments to the field scaling relation from the literature, and find that the depletion time evolution is steeper for galaxies in overdense environments than for those in the field. More molecular gas measurements of normal galaxies in overdense environments at higher redshifts ($z > 2.5$) are needed to verify the environmental dependence of star formation and gas depletion.
Nuclear outflows driven by accreting massive black holes are one of the main feedback mechanisms invoked at high-z to reproduce the distinct separation between star-forming, disk galaxies and quiescent spheroidal systems. Yet, our knowledge of feedback at high-z remains limited by the lack of observations of the multiple gas phases in galaxy outflows. In this work we use new deep, high-spatial resolution ALMA CO(3-2) and archival VLT/SINFONI H$alpha$ observations to study the molecular and ionized components of the AGN-driven outflow in zC400528 ---a massive, main sequence galaxy at z=2.3 in the process of quenching. We detect a powerful molecular outflow that shows a positive velocity gradient and extends for at least ~10 kpc from the nuclear region, about three times the projected size of the ionized wind. The molecular gas in the outflow does not reach velocities high enough to escape the galaxy and is therefore expected to be reaccreted. Keeping in mind the various assumptions involved in the analysis, we find that the mass and energetics of the outflow are dominated by the molecular phase. The AGN-driven outflow in zC400528 is powerful enough to deplete the molecular gas reservoir on a timescale at least twice shorter than that needed to exhaust it by star formation. This suggests that the nuclear outflow is one of the main quenching engines at work in the observed suppression of the central star-formation activity in zC400528.
We present multi-sightline absorption spectroscopy of cool gas around three lensing galaxies at z=0.4-0.7. These lenses have half-light radii r_e=2.6-8 kpc and stellar masses of log M*/Ms=10.9-11.4, and therefore resemble nearby passive elliptical galaxies. The lensed QSO sightlines presented here occur at projected distances of d=3-15 kpc (or d~1-2 r_e) from the lensing galaxies, providing for the first time an opportunity to probe both interstellar gas at r~r_e and circumgalactic gas at larger radii r>>re of these distant quiescent galaxies. We observe distinct gas absorption properties among different lenses and among sightlines of individual lenses. Specifically, while the quadruple lens for HE0435-1223 shows no absorption features to very sensitive limits along all four sightlines, strong Mg II, Fe II, Mg I, and Ca II absorption transitions are detected along both sightlines near the double lens for HE0047-1756, and in one of the two sightlines near the double lens for HE1104-1805. The absorbers are resolved into 8-15 individual components with a line-of-sight velocity spread of dv~300-600 km/s. The large ionic column densities, log N>14, observed in two components suggest that these may be Lyman limit or damped Lya absorbers with a significant neutral hydrogen fraction. The majority of the absorbing components exhibit a uniform super solar Fe/Mg ratio with a scatter of <0.1 dex across the full dv range. Given a predominantly old stellar population in these lensing galaxies, we argue that the observed large velocity width and Fe-rich abundance pattern can be explained by SNe Ia enriched gas at radius r~r_e. We show that additional spatial constraints in line-of-sight velocity and relative abundance ratios afforded by a multi-sightline approach provide a powerful tool to resolve the origin of chemically-enriched cool gas in massive halos.
One of the greatest challenges to theoretical models of massive galaxy formation is the regulation of star formation at early times. The relative roles of molecular gas expulsion, depletion, and stabilization are uncertain as direct observational constraints of the gas reservoirs in quenched or quenching galaxies at high redshift are scant. We present ALMA observations of CO(2-1) in a massive ($log M_{star}/M_{odot}=11.2$), recently quenched galaxy at $z=1.522$. The optical spectrum of this object shows strong Balmer absorption lines, which implies that star formation ceased $sim$0.8 Gyr ago. We do not detect CO(2-1) line emission, placing an upper limit on the molecular $mathrm{H_2}$ gas mass of 1.1$times10^{10},M_{odot}$. The implied gas fraction is $f_{rm{H_2}}{equiv M_{H_2}/M_{star}}<7%$, $sim10times$ lower than typical star forming galaxies at similar stellar masses at this redshift, among the lowest gas fractions at this specific star formation rate at any epoch, and the most stringent constraint on the gas contents of a $z>1$ passive galaxy to date. Our observations show that the depletion of $mathrm{H_2}$ from the interstellar medium of quenched objects can be both efficient and fairly complete, in contrast to recent claims of significant cold gas in recently quenched galaxies. We explore the variation in observed gas fractions in high-$z$ galaxies and show that galaxies with high stellar surface density have low $f_{rm{H_2}}$, similar to recent correlations between specific star formation rate and stellar surface density.