Do you want to publish a course? Click here

Discovery of a strong ionized-gas outflow in an AKARI-selected Ultra-luminous Infrared Galaxy at z = 0.5

357   0   0.0 ( 0 )
 Added by Xiao-Yang Chen
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In order to construct a sample of ultra-luminous infrared galaxies (ULIRGs, with infrared luminosity, $L_{rm IR} > 10^{12}$ L$_{odot}$) at 0.5 < z < 1, we are conducting an optical follow-up program for bright 90-$mu$m FIR sources with a faint optical (i < 20) counterpart selected in the AKARI Far-Infrared Surveyor (FIS) Bright Source catalog (Ver.2). AKARI-FIS-V2 J0916248+073034, identified as a ULIRG at z = 0.49 in the spectroscopic follow-up observation, indicates signatures of an extremely strong outflow in its emission line profiles. Its [OIII] 5007AA emission line shows FWHM of 1830 km s$^{-1}$ and velocity shift of -770 km s$^{-1}$ in relative to the stellar absorption lines. Furthermore, low-ionization [OII] 3726AA 3729AA doublet also shows large FWHM of 910 km s$^{-1}$ and velocity shift of -380 km s$^{-1}$. After the removal of an unresolved nuclear component, the long-slit spectroscopy 2D image possibly shows that the outflow extends to radius of 4 kpc. The mass outflow and energy ejection rates are estimated to be 500 M$_{odot}$ yr$^{-1}$ and $4times10^{44}$ erg s$^{-1}$, respectively, which imply that the outflow is among the most powerful ones observed in ULIRGs and QSOs at 0.3 < z < 1.6. The co-existence of the strong outflow and intense star formation (star formation rate of 990 M$_{odot}$ yr$^{-1}$) indicates that the feedback of the strong outflow has not severely affect the star-forming region of the galaxy.



rate research

Read More

We report the discovery of an infrared (IR)-bright dust-obscured galaxy (DOG) that shows a strong ionized-gas outflow but no significant molecular gas outflow. Based on detail analysis of their optical spectra, we found some peculiar IR-bright DOGs that show strong ionized-gas outflow ([OIII]$lambda$5007) from the central active galactic nucleus (AGN). For one of these DOGs (WISE J102905.90+050132.4) at $z_{rm spec} = 0.493$, we performed follow-up observations using ALMA to investigate their CO molecular gas properties. As a result, we successfully detected $^{12}$CO($J$=2-1) and $^{12}$CO($J$=4-3) lines, and the continuum of this DOG. The intensity-weighted velocity map of both lines shows a gradient, and the line profile of those CO lines is well-fitted by a single narrow Gaussian, meaning that this DOG has no sign of strong molecular gas outflow. The IR luminosity of this object is $log,(L_{rm IR}/L_{odot})$ = 12.40 that is classified as ultraluminous IR galaxy (ULIRG). We found that (i) the stellar mass and star-formation rate relation and (ii) the CO luminosity and far-IR luminosity relation are consistent with those of typical ULIRGs at similar redshifts. These results indicate that the molecular gas properties of this DOG are normal despite that its optical spectrum showing a powerful AGN outflow. We conclude that a powerful ionized-gas outflow caused by the AGN does not necessarily affect the cold interstellar medium in the host galaxy at least for this DOG.
BOSS-EUVLG1 is the most ultraviolet (UV) and Ly$alpha$ luminous galaxy detected so far in the Universe, going through a very active starburst phase, and forming stars at a rate (SFR) of 955 $pm$ 118 M$_{odot}$ yr$^{-1}$. We report the detection of a broad H$alpha$ component carrying 25% of the total H$alpha$ flux. The broad H$alpha$ line traces a fast and massive ionized gas outflow characterized by a total mass, $log(M_{out}[M_{odot}]),$ of 7.94 $pm$ 0.15, an outflowing velocity (V$_{out}$) of 573 $pm$ 151 km s$^{-1}$, and an outflowing mass rate ($dot{M}_{out}$) of 44 $pm$ 20 M$_{odot}$ yr$^{-1}$. The presence of the outflow in BOSS-EUVLG1 is also supported by the identification of blueshifted UV absorption lines in low and high ionization states. The energy involved in the H$alpha$ outflow can be explained by the ongoing star formation without the need for an Active Galactic Nucleus. The derived low mass loading factor ($eta$= 0.05 $pm$ 0.03) indicates that although massive, this phase of the outflow can not be relevant for the quenching of the star formation. In addition, only a small fraction ($leq$ 15%) of the ionized outflowing material with velocities above 372 km s$^{-1}$ could escape the gravitational potential, and enrich the surrounding circum-galactic medium at distances above tens of kpc. The ionized phase of the outflow does not carry the mass and energy to play a relevant role neither in the evolution of the host galaxy nor in the enrichment of the intergalactic medium. Other phases of the outflow could be carrying most of the outflow energy and mass in the form of hot X-ray emitting gas as predicted by some recent simulations. The expected emission of the extended X-ray emitting halo associated with the outflow in BOSS-EUVLG1 and similar galaxies could be detected with the future X-ray observatory, {it ATHENA} but could not be resolved spatially.
Nuclear outflows driven by accreting massive black holes are one of the main feedback mechanisms invoked at high-z to reproduce the distinct separation between star-forming, disk galaxies and quiescent spheroidal systems. Yet, our knowledge of feedback at high-z remains limited by the lack of observations of the multiple gas phases in galaxy outflows. In this work we use new deep, high-spatial resolution ALMA CO(3-2) and archival VLT/SINFONI H$alpha$ observations to study the molecular and ionized components of the AGN-driven outflow in zC400528 ---a massive, main sequence galaxy at z=2.3 in the process of quenching. We detect a powerful molecular outflow that shows a positive velocity gradient and extends for at least ~10 kpc from the nuclear region, about three times the projected size of the ionized wind. The molecular gas in the outflow does not reach velocities high enough to escape the galaxy and is therefore expected to be reaccreted. Keeping in mind the various assumptions involved in the analysis, we find that the mass and energetics of the outflow are dominated by the molecular phase. The AGN-driven outflow in zC400528 is powerful enough to deplete the molecular gas reservoir on a timescale at least twice shorter than that needed to exhaust it by star formation. This suggests that the nuclear outflow is one of the main quenching engines at work in the observed suppression of the central star-formation activity in zC400528.
The aim of this work is to characterize physical properties of Ultra Luminous Infrared Galaxies (ULIRGs) and Luminous Infrared Galaxies (LIRGs) detected in the far-infrared (FIR) 90um band in the AKARI Deep Field-South (ADF-S) survey. In particular, we want to estimate the AGN contribution to the [U]LIRGs infrared emission and which types of AGNs are related to their activity. We examined 69 galaxies at z>0.05 detected at 90um by the AKARI satellite in the ADF-S, with optical counterparts and spectral coverage from the ultraviolet to the FIR. We used two independent spectral energy distribution fitting codes: one fitting the SED from FIR to FUV (CIGALE) and gray-body + power spectrum fit for the infrared part of the spectra (CMCIRSED) in order to identify a subsample of [U]LIRGs, and to estimate their properties. Based on the CIGALE SED fitting, we have found that [U]LIRGs selected at the 90um AKARI band compose ~56% of our sample (we found 17 ULIRGs and 22 LIRGs, spanning over the redshift range 0.06<z<1.23). Their physical parameters, such as stellar mass, star formation rate (SFR), and specific SFR are consistent with the ones found for other samples selected at IR wavelengths. We have detected a significant AGN contribution to the MIR luminosity for 63% of LIRGs and ULIRGs. Our LIRGs contain Type 1, Type 2, and intermediate types of AGN, whereas for ULIRGs, a majority (more than 50%) of AGN emission originates from Type 2 AGNs. The temperature--luminosity and temperature--mass relations for the dust component of ADF--S LIRGs and ULIRGs indicate that these relations are shaped by the dust mass and not by the increased dust heating. We conclude that LIRGs contain Type 1, Type 2, and intermediate types of AGNs, with an AGN contribution to the MIR emission at the median level of 13+/-3%, whereas the majority of ULIRGs contain Type 2 AGNs, with a median AGN fraction equal to 19+/-8%.
We present results on low-resolution mid-infrared (MIR) spectra of 70 infrared-luminous galaxies obtained with the Infrared Spectrograph (IRS) onboard Spitzer. We selected sources from the European Large Area Infrared Survey (ELAIS) with S15 > 0.8 mJy and photometric or spectroscopic z > 1. About half of the sample are QSOs in the optical, while the remaining sources are galaxies, comprising both obscured AGN and starbursts. We classify the spectra using well-known infrared diagnostics, as well as a new one that we propose, into three types of source: those dominated by an unobscured AGN (QSOs), obscured AGN, and starburst-dominated sources. Starbursts concentrate at z ~ 0.6-1.0 favored by the shift of the 7.7-micron PAH band into the selection 15 micron band, while AGN spread over the 0.5 < z < 3.1 range. Star formation rates (SFR) are estimated for individual sources from the luminosity of the PAH features. An estimate of the average PAH luminosity in QSOs and obscured AGN is obtained from the composite spectrum of all sources with reliable redshifts. The estimated mean SFR in the QSOs is 50-100 Mo yr^-1, but the implied FIR luminosity is 3-10 times lower than that obtained from stacking analysis of the FIR photometry, suggesting destruction of the PAH carriers by energetic photons from the AGN. The SFR estimated in obscured AGN is 2-3 times higher than in QSOs of similar MIR luminosity. This discrepancy might not be due to luminosity effects or selection bias alone, but could instead indicate a connection between obscuration and star formation. However, the observed correlation between silicate absorption and the slope of the near- to mid-infrared spectrum is compatible with the obscuration of the AGN emission in these sources being produced in a dust torus.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا