No Arabic abstract
A new class of high-performance pyrrolidinium cation based ionanofluid electrolytes with higher lithium salt concentration are developed. The electrolytes are formed by dispersing imidazolium ionic liquid functionalized TiO2 nanoparticles in low conducting, 0.6 M lithium salt doped N-alkyl-N-butylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Pyr14TFSI) ionic liquid (IL) hosted electrolyte. Viscosity, ionic conductivity and thermal properties of these electrolytes are compared with well studied 0.2 M salt doped Pyr14TFSI IL-based electrolyte. The highly crystalline 0.6 M lithium salt dissolved IL-based electrolytes gradually become amorphous with the increasing dispersion of surface functionalized nanoparticles within it. The ionic conductivity of the electrolytes shows unusual viscosity decoupled characteristics and at the 5.0 wt% nanoparticle dispersion it attains a maximum value, higher than that of pure IL host. As compared to pure IL-based electrolytes, the ionanofluid electrolyte also possesses a significantly higher value of lithium ion transference number. The Li/LiMn2O4 cell with the best conducting ionanofluid electrolyte delivers a discharge capacity of about 131 mAh g-1 at 25 degree C at a current density of 24 mA g-1, much higher than that obtained in 0.2 M Li salt dissociated Pyr14TFSI electrolyte (87 mAh g-1). Superior interfacial compatibility between ionanofluid electrolyte and electrodes as indicated by the excellent rate performance with outstanding capacity retention of the cell as compared to pure IL-based analogue, further establish great application potentiality of this optimized newly developed electrolyte for safer LMBs.
A porous electrode resulting from unregulated Li growth is the major cause of the low Coulombic efficiency and potential safety hazards of rechargeable Li metal batteries. Strategies aiming to achieve large granular Li deposits have been extensively explored; yet, the ideal Li deposits, which consist of large Li particles that are seamlessly packed on the electrode and can be reversibly deposited and stripped, have never been achieved. Here, by controlling the uniaxial stack pressure during battery operation, a dense Li deposition (99.49% electrode density) with an ideal columnar structure has been achieved. Using multi-scale characterization and simulation, we elucidated the critical role of stack pressure on Li nucleation, growth and dissolution processes, and developed innovative strategies to maintain the ideal Li morphology during extended cycling. The precision manipulation of Li deposition and dissolution is a critical step to enable fast charging and low temperature operation for Li metal batteries.
The existence of passivating layers at the interfaces is a major factor enabling modern lithium-ion (Li-ion) batteries. Their properties determine the cycle life, performance, and safety of batteries. A special case is the solid electrolyte interphase (SEI), a heterogeneous multi-component film formed due to the instability and subsequent decomposition of the electrolyte at the surface of the anode. The SEI acts as a passivating layer that hinders further electrolyte disintegration, which is detrimental to the Coulombic efficiency. In this work, we use first-principles simulations to investigate the kinetic and electronic properties of the interface between lithium fluoride (LiF) and lithium carbonate (Li$_2$CO$_3$), two common SEI components present in Li-ion batteries with organic liquid electrolytes. We find a coherent interface between these components that restricts the strain in each of them to below 3%. We find that the interface causes a large increase in the formation energy of the Frenkel defect, generating Li vacancies in LiF and Li interstitials in Li$_2$CO$_3$ responsible for transport. On the other hand, the Li interstitial hopping barrier is reduced from $0.3$ eV in bulk Li$_2$CO$_3$ to $0.10$ or $0.22$ eV in the interfacial structure considered, demonstrating the favorable role of the interface. Controlling these two effects in a heterogeneous SEI is crucial for maintaining fast ion transport in the SEI. We further perform Car-Parrinello molecular dynamics simulations to explore Li ion conduction in our interfacial structure, which reveal an enhanced Li ion diffusion in the vicinity of the interface. Understanding the interfacial properties of the multiphase SEI represents an important frontier to enable next-generation batteries.
Lithium metal batteries are seen as a critical piece towards electrifying aviation. During charging, plating of lithium metal, a critical failure mechanism, has been studied and mitigation strategies have been proposed. For electric aircraft, high discharge power requirements necessitate stripping of lithium metal in an uniform way and recent studies have identified the evolution of surface voids and pits as a potential failure mechanism. In this work, using density functional theory calculations and thermodynamic analysis, we investigate the discharge process on lithium metal surfaces. In particular, we calculate the tendency for vacancy congregation on lithium metal surfaces, which constitutes the first step in the formation of voids and pits. We find that among the low Miller index surfaces, the (111) surface is the least likely to exhibit pitting issues. Our analysis suggests that faceting control during electrodeposition could be a key pathway towards simultaneously enabling both fast charge and fast discharge.
Electrolyte stability against oxidation is one of the important factors limiting the development of high energy density batteries. HOMO level of solvent molecules has been successfully used for understanding trends in their oxidative stability but assumes a non-interacting environment. However, solvent HOMO levels are renormalized due to molecules in their solvation shells. In this work, we first demonstrate an inexpensive and accurate method to determine the HOMO level of solvent followed by simple descriptors for renormalization of HOMO level due to different electrolyte components. The descriptors are based on Gutmann Donor and Acceptor numbers of solvent and other components. The method uses fast GGA-level DFT calculations compared to previously used expensive, experimental data dependent methods. This method can be used to screen for unexplored stable solvents among the large number of known organic compounds to design novel high voltage stable electrolytes.
We present a porous electrode model for lithium-ion batteries using Butler--Volmer reaction kinetics. We model lithium concentration in both the solid and fluid phase along with solid and liquid electric potential. Through asymptotic reduction, we show that the electric potentials are spatially homogeneous which decouples the problem into a series of time-dependent problems. These problems can be solved on three distinguished time scales, an early time scale where capacitance effects in the electrode dominate, a mid-range time scale where a spatial concentration gradient forms in the electrolyte, and a long-time scale where each of the electrodes saturate and deplete with lithium respectively. The solid-phase concentration profiles are linear functions of time and the electrolyte potential is everywhere zero, which allows the model to be reduced to a system of two uncoupled ordinary differential equations. Analytic and numerical results are compared with full numerical simulations and experimental discharge curves demonstrating excellent agreement.