Do you want to publish a course? Click here

Atomic scale analysis of Nb3Sn on Nb prepared by a vapor-diffusion process for superconducting radiofrequency cavity applications

311   0   0.0 ( 0 )
 Added by Jaeyel Lee
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report an atomic-scale analysis of the microstructure of Nb3Sn coating on Nb prepared by vapor diffusion process for superconducting radiofrequency (SRF) cavity application using transmission electron microscopy (TEM). Epitaxial growth of Nb3Sn on the Nb substrate is found and four types of orientation relationships at the Nb3Sn/Nb interface are identified by electron diffraction or high-resolution scanning transmission electron microscopy (STEM) analysis. Thin Nb3Sn grains are observed in regions with low Sn flux and they have the specific orientation relationship, Nb3Sn (1-20)//Nb (-111) and Nb3Sn (002)//Nb (0-11). The Nb3Sn/Nb interface of thin grains had a large lattice mismatch, 12.3 at.%, and a high density of misfit dislocations was observed by HR-STEM. Based on our microstructural analysis of the thin grains, we conclude that the thin regions are probably a result of a slow interfacial reaction with this particular orientation relationship at the interface. The Sn-deficient regions are seen to form initially at the Nb3Sn/Nb interface and remain in the grains due to the slow diffusion of Sn in bulk Nb3Sn. The formation of Sn-deficient regions and the effects of strain and interfacial energies on the formation of Sn-deficient regions at various interfaces were also estimated by first-principle calculation. The finding of orientation relationships at the Nb3Sn/Nb interface provides important information about the formation of defects in Nb3Sn coatings such as large thin regions, Sn-deficient regions, which are critical to the performance of Nb3Sn superconducting radiofrequency cavities for accelerators.



rate research

Read More

86 - Jaeyel Lee , Zugang Mao , Kai He 2019
We report on atomic-scale analyses of grain boundary (GB) structures and segregation in Nb3Sn coatings on Nb, prepared by the vapor-diffusion process, for superconducting radiofrequency (SRF) cavity applications, utilizing atom-probe tomography, high-resolution scanning transmission electron-microscopy and first-principles calculations. We demonstrate that the chemical composition of Nb3Sn GBs is correlated strongly with the diffusion of Sn and Nb at GBs during the coating process. In a sample coated with a relatively large Sn flux, we observe an interfacial width of Sn segregation at a GB of ~3 nm, with a maximum concentration of ~35 at.%. After post-annealing at 1100 oC for 3 h, the Sn segregated at GBs disappears and Nb segregation is observed subsequently at GBs, indicating that Nb diffused into the Nb3Sn GBs from the Nb substrate. It is also demonstrated that the amount of Sn segregation in a Nb3Sn coating can be controlled by: (i) Sn flux; and (ii) the temperatures of the Nb substrates and Sn source, which may affect the overall kinetics including GB diffusion of Sn and Nb. An investigation of the correlation between the chemical compositions of GBs and Nb3Sn SRF cavity performance reveals that the Nb3Sn SRF cavities with the best performance (high-quality factors at high accelerating electric-field gradients) do not exhibit Sn segregation at GBs. Our results suggest that the chemical compositions of GBs in Nb3Sn coatings for SRF cavities can be controlled by GB engineering and can be utilized to optimize fabrication of high-quality Nb3Sn coatings for SRF cavities.
We present an analysis of the Nb3Sn surface layers grown on a bulk niobium (Nb) coupon prepared at the same time and by the same vapor diffusion process used to make Nb3Sn coatings on 1.3 GHz cavities. Tunneling spectroscopy reveals a well-developed, homogeneous superconducting density of states at the surface with a gap value distribution centered around 2.7 meV and superconducting critical temperature (Tc) up to 16.3 K. Scanning Electron microscopy (STEM) performed on cross section of the samples surface region shows a 2 microns thick Nb3Sn surface layer. The elemental composition map exhibits a Nb over Sn ratio of 3 and reveals the presence of buried sub-stoichiometric regions that have a ratio f 5. Synchrotron x-ray diffraction experiments indicate a polycrystalline Nb3Sn film and confirm the presence of Nb rich regions that occupy about a third of the coating volume. These low Tc regions could play an important role in the dissipation mechanism occurring during RF tests of Nb3Sn-coated cavities and open the way for further improving a very promising alternative to pure Nb cavities for particle accelerators.
128 - S. Posen , J. Lee , D.N. Seidman 2020
Nb3Sn is a promising next-generation material for superconducting radiofrequency cavities, with significant potential for both large scale and compact accelerator applications. However, so far, Nb3Sn cavities have been limited to cw accelerating fields <18 MV/m. In this paper, new results are presented with significantly higher fields, as high as 24 MV/m in single cell cavities. Results are also presented from the first ever Nb3Sn-coated 1.3 GHz 9-cell cavity, a full-scale demonstration on the cavity type used in production for the European XFEL and LCLS-II. Results are presented together with heat dissipation curves to emphasize the potential for industrial accelerator applications using cryocooler-based cooling systems. The cavities studied have an atypical shiny visual appearance, and microscopy studies of witness samples reveal significantly reduced surface roughness and smaller film thickness compared to typical Nb3Sn films for superconducting cavities. Possible mechanisms for increased maximum field are discussed as well as implications for physics of RF superconductivity in the low coherence length regime. Outlook for continued development is presented.
Nb3Sn has the potential to achieve superior performance in terms of quality factor, accelerating gradient and operating temperature (4.2 K vs 2 K) resulting in significant reduction in both capital and operating costs compared to traditional niobium SRF accelerator cavities. Tin vapor diffusion coating of Nb3Sn on niobium appears to be a simple, yet most efficient technique so far to fabricate such cavities. Here, cavity interior surface coatings are obtained by a two step process: nucleation followed by deposition. The first step is normally accomplished with Sn/SnCl2 at a constant low temperature (500 {deg}C) for several hours. To elucidate the role of this step, we systematically studied the niobium surface nucleated under varying process conditions. The surfaces obtained in typical tin/tin chloride processes were characterized using SEM/EDS, AFM, XPS, SAM and TEM. Examination of the surfaces nucleated under the standard conditions revealed not only tin particles, but also tin film on the surfaces resembling the surface obtained by Stranski-Krastanov growth mode. All the nucleation attempted with SnCl2 yielded better uniformity of Nb3Sn coating compared to coating obtained without nucleation, which often included random patchy regions with irregular grain structure. Even though the variation of nucleation parameters was able to produce different surfaces following nucleation, no evidence was found for any significant impact on the final coating.
We demonstrate practical accelerating gradients on a superconducting radiofrequency (SRF) accelerator cavity with cryocooler conduction cooling, a cooling technique that does not involve the complexities of the conventional liquid helium bath. A design is first presented that enables conduction cooling an elliptical-cell SRF cavity. Implementing this design, a single cell 650 MHz Nb3Sn cavity coupled using high purity aluminum thermal links to a 4 K pulse tube cryocooler generated accelerating gradients up to 6.6 MV/m at 100% duty cycle. The experiments were carried out with the cavity-cryocooler assembly in a simple vacuum vessel, completely free of circulating liquid cryogens. We anticipate that this cryocooling technique will make the SRF technology accessible to interested accelerator researchers who lack access to full-stack helium cryogenic systems. Furthermore, the technique can lead to SRF based compact sources of high average power electron beams for environmental protection and industrial applications. A concept of such an SRF compact accelerator is presented.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا