Do you want to publish a course? Click here

Initial Growth Of Tin On Niobium For Vapor Diffusion Coating Of Nb3sn

126   0   0.0 ( 0 )
 Added by Michael Kelley
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nb3Sn has the potential to achieve superior performance in terms of quality factor, accelerating gradient and operating temperature (4.2 K vs 2 K) resulting in significant reduction in both capital and operating costs compared to traditional niobium SRF accelerator cavities. Tin vapor diffusion coating of Nb3Sn on niobium appears to be a simple, yet most efficient technique so far to fabricate such cavities. Here, cavity interior surface coatings are obtained by a two step process: nucleation followed by deposition. The first step is normally accomplished with Sn/SnCl2 at a constant low temperature (500 {deg}C) for several hours. To elucidate the role of this step, we systematically studied the niobium surface nucleated under varying process conditions. The surfaces obtained in typical tin/tin chloride processes were characterized using SEM/EDS, AFM, XPS, SAM and TEM. Examination of the surfaces nucleated under the standard conditions revealed not only tin particles, but also tin film on the surfaces resembling the surface obtained by Stranski-Krastanov growth mode. All the nucleation attempted with SnCl2 yielded better uniformity of Nb3Sn coating compared to coating obtained without nucleation, which often included random patchy regions with irregular grain structure. Even though the variation of nucleation parameters was able to produce different surfaces following nucleation, no evidence was found for any significant impact on the final coating.



rate research

Read More

In the beam pipe of the positron Main Damping Ring (MDR) of the Next Linear Collider (NLC), ionization of residual gases and secondary electron emission give rise to an electron cloud which can cause the loss of the circulating beam. One path to avoid the electron cloud is to ensure that the vacuum wall has low secondary emission yield and, therefore, we need to know the secondary emission yield (SEY) for candidate wall coatings. We report on SEY measurements at SLAC on titanium nitride (TiN) and titanium-zirconium-vanadium (TiZrV) thin sputter-deposited films, as well as describe our experimental setup.
We report an atomic-scale analysis of the microstructure of Nb3Sn coating on Nb prepared by vapor diffusion process for superconducting radiofrequency (SRF) cavity application using transmission electron microscopy (TEM). Epitaxial growth of Nb3Sn on the Nb substrate is found and four types of orientation relationships at the Nb3Sn/Nb interface are identified by electron diffraction or high-resolution scanning transmission electron microscopy (STEM) analysis. Thin Nb3Sn grains are observed in regions with low Sn flux and they have the specific orientation relationship, Nb3Sn (1-20)//Nb (-111) and Nb3Sn (002)//Nb (0-11). The Nb3Sn/Nb interface of thin grains had a large lattice mismatch, 12.3 at.%, and a high density of misfit dislocations was observed by HR-STEM. Based on our microstructural analysis of the thin grains, we conclude that the thin regions are probably a result of a slow interfacial reaction with this particular orientation relationship at the interface. The Sn-deficient regions are seen to form initially at the Nb3Sn/Nb interface and remain in the grains due to the slow diffusion of Sn in bulk Nb3Sn. The formation of Sn-deficient regions and the effects of strain and interfacial energies on the formation of Sn-deficient regions at various interfaces were also estimated by first-principle calculation. The finding of orientation relationships at the Nb3Sn/Nb interface provides important information about the formation of defects in Nb3Sn coatings such as large thin regions, Sn-deficient regions, which are critical to the performance of Nb3Sn superconducting radiofrequency cavities for accelerators.
396 - M. Dai , W. Guo , X. Liu 2018
We deposit thin titanium-nitride (TiN) and TiN/Ti/TiN multilayer films on sapphire substrates and measure the reflectance and transmittance in the wavelength range from 400 nm to 2000 nm using a spectrophotometer. The optical constants (complex refractive indices), including the refractive index n and the extinction coefficient k, have been derived. With the extracted refractive indices, we propose an optical stack structure using low-loss amorphous Si (a-Si) anti-reflective coating and a backside aluminum (Al) reflecting mirror, which can in theory achieve 100% photon absorption at 1550 nm. The proposed optical design shows great promise in enhancing the optical efficiency of TiN-based microwave kinetic inductance photon-number-resolving detectors.
In powder-in-tube (PIT) Nb3Sn composites, the A15 phase forms between a central tin-rich core and a coaxial Nb tube, thus causing the tin content and superconducting properties to vary with radius across the A15 layer. Since this geometry is also ideal for magnetic characterization of the superconducting properties with the field parallel to the tube axis, a system of concentric shells with varying tin content was used to simulate the superconducting properties, the overall severity of the Sn composition gradient being defined by an index N. Using well-known scaling relationships and property trends developed in an earlier experimental study, the critical current density for each shell was calculated, and from this the magnetic moment of each shell was found. By summing these moments, experimentally measured properties such as pinning-force curves and Kramer plots could be simulated. We found that different tin profiles have only a minor effect on the shape of Kramer plots, but a pronounced effect on the irreversibility fields defined by the extrapolation of Kramer plots. In fact, these extrapolated values H_K are very close to a weighted average of the superconducting properties across the layer for all N. The difference between H_K and the upper critical field commonly seen in experiments is a direct consequence of the different ways measurements probe the simulated Sn gradients. Sn gradients were found to be significantly deleterious to the critical current density Jc, since reductions to both the elementary pinning force and the flux pinning scaling field H_K compound the reduction in Jc. The simulations show that significant gains in Jc of Nb3Sn strands might be realized by circumventing strong compositional gradients of tin.
The recent theoretical study on the multilayer-coating model published in Applied Physics Letters [1] is reviewed. Magnetic-field attenuation behavior in a multilayer coating model is different from a semi-infinite superconductor and a superconducting thin film. This difference causes that of the vortex-penetration field at which the Bean-Livingston surface barrier disappears. A material with smaller penetration depth, such as a pure Nb, is preferable as the substrate for pushing up the vortex-penetration field of the superconductor layer. The field limit of the whole structure of the multilayer coating model is limited not only by the vortex-penetration field of the superconductor layer, but also by that of the substrate. Appropriate thicknesses of superconductor and insulator layers can be extracted from contour plots of the field limit of the multilayer coating model given in Ref.[1].
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا