No Arabic abstract
The explosion of video data on the internet requires effective and efficient technology to generate captions automatically for people who are not able to watch the videos. Despite the great progress of video captioning research, particularly on video feature encoding, the language decoder is still largely based on the prevailing RNN decoder such as LSTM, which tends to prefer the frequent word that aligns with the video. In this paper, we propose a boundary-aware hierarchical language decoder for video captioning, which consists of a high-level GRU based language decoder, working as a global (caption-level) language model, and a low-level GRU based language decoder, working as a local (phrase-level) language model. Most importantly, we introduce a binary gate into the low-level GRU language decoder to detect the language boundaries. Together with other advanced components including joint video prediction, shared soft attention, and boundary-aware video encoding, our integrated video captioning framework can discover hierarchical language information and distinguish the subject and the object in a sentence, which are usually confusing during the language generation. Extensive experiments on two widely-used video captioning datasets, MSR-Video-to-Text (MSR-VTT) cite{xu2016msr} and YouTube-to-Text (MSVD) cite{chen2011collecting} show that our method is highly competitive, compared with the state-of-the-art methods.
Recent advances of video captioning often employ a recurrent neural network (RNN) as the decoder. However, RNN is prone to diluting long-term information. Recent works have demonstrated memory network (MemNet) has the advantage of storing long-term information. However, as the decoder, it has not been well exploited for video captioning. The reason partially comes from the difficulty of sequence decoding with MemNet. Instead of the common practice, i.e., sequence decoding with RNN, in this paper, we devise a novel memory decoder for video captioning. Concretely, after obtaining representation of each frame through a pre-trained network, we first fuse the visual and lexical information. Then, at each time step, we construct a multi-layer MemNet-based decoder, i.e., in each layer, we employ a memory set to store previous information and an attention mechanism to select the information related to the current input. Thus, this decoder avoids the dilution of long-term information. And the multi-layer architecture is helpful for capturing dependencies between frames and word sequences. Experimental results show that even without the encoding network, our decoder still could obtain competitive performance and outperform the performance of RNN decoder. Furthermore, compared with one-layer RNN decoder, our decoder has fewer parameters.
Dense video captioning aims to generate multiple associated captions with their temporal locations from the video. Previous methods follow a sophisticated localize-then-describe scheme, which heavily relies on numerous hand-crafted components. In this paper, we proposed a simple yet effective framework for end-to-end dense video captioning with parallel decoding (PDVC), by formulating the dense caption generation as a set prediction task. In practice, through stacking a newly proposed event counter on the top of a transformer decoder, the PDVC precisely segments the video into a number of event pieces under the holistic understanding of the video content, which effectively increases the coherence and readability of predicted captions. Compared with prior arts, the PDVC has several appealing advantages: (1) Without relying on heuristic non-maximum suppression or a recurrent event sequence selection network to remove redundancy, PDVC directly produces an event set with an appropriate size; (2) In contrast to adopting the two-stage scheme, we feed the enhanced representations of event queries into the localization head and caption head in parallel, making these two sub-tasks deeply interrelated and mutually promoted through the optimization; (3) Without bells and whistles, extensive experiments on ActivityNet Captions and YouCook2 show that PDVC is capable of producing high-quality captioning results, surpassing the state-of-the-art two-stage methods when its localization accuracy is on par with them. Code is available at https://github.com/ttengwang/PDVC.
Due to the rapid emergence of short videos and the requirement for content understanding and creation, the video captioning task has received increasing attention in recent years. In this paper, we convert traditional video captioning task into a new paradigm, ie, Open-book Video Captioning, which generates natural language under the prompts of video-content-relevant sentences, not limited to the video itself. To address the open-book video captioning problem, we propose a novel Retrieve-Copy-Generate network, where a pluggable video-to-text retriever is constructed to retrieve sentences as hints from the training corpus effectively, and a copy-mechanism generator is introduced to extract expressions from multi-retrieved sentences dynamically. The two modules can be trained end-to-end or separately, which is flexible and extensible. Our framework coordinates the conventional retrieval-based methods with orthodox encoder-decoder methods, which can not only draw on the diverse expressions in the retrieved sentences but also generate natural and accurate content of the video. Extensive experiments on several benchmark datasets show that our proposed approach surpasses the state-of-the-art performance, indicating the effectiveness and promising of the proposed paradigm in the task of video captioning.
Video captioning aims to automatically generate natural language descriptions of video content, which has drawn a lot of attention recent years. Generating accurate and fine-grained captions needs to not only understand the global content of video, but also capture the detailed object information. Meanwhile, video representations have great impact on the quality of generated captions. Thus, it is important for video captioning to capture salient objects with their detailed temporal dynamics, and represent them using discriminative spatio-temporal representations. In this paper, we propose a new video captioning approach based on object-aware aggregation with bidirectional temporal graph (OA-BTG), which captures detailed temporal dynamics for salient objects in video, and learns discriminative spatio-temporal representations by performing object-aware local feature aggregation on detected object regions. The main novelties and advantages are: (1) Bidirectional temporal graph: A bidirectional temporal graph is constructed along and reversely along the temporal order, which provides complementary ways to capture the temporal trajectories for each salient object. (2) Object-aware aggregation: Learnable VLAD (Vector of Locally Aggregated Descriptors) models are constructed on object temporal trajectories and global frame sequence, which performs object-aware aggregation to learn discriminative representations. A hierarchical attention mechanism is also developed to distinguish different contributions of multiple objects. Experiments on two widely-used datasets demonstrate our OA-BTG achieves state-of-the-art performance in terms of BLEU@4, METEOR and CIDEr metrics.
Taking full advantage of the information from both vision and language is critical for the video captioning task. Existing models lack adequate visual representation due to the neglect of interaction between object, and sufficient training for content-related words due to long-tailed problems. In this paper, we propose a complete video captioning system including both a novel model and an effective training strategy. Specifically, we propose an object relational graph (ORG) based encoder, which captures more detailed interaction features to enrich visual representation. Meanwhile, we design a teacher-recommended learning (TRL) method to make full use of the successful external language model (ELM) to integrate the abundant linguistic knowledge into the caption model. The ELM generates more semantically similar word proposals which extend the ground-truth words used for training to deal with the long-tailed problem. Experimental evaluations on three benchmarks: MSVD, MSR-VTT and VATEX show the proposed ORG-TRL system achieves state-of-the-art performance. Extensive ablation studies and visualizations illustrate the effectiveness of our system.