No Arabic abstract
This paper tests a conjecture on discrete non-Abelian gauging of 3d $mathcal{N} = 4$ supersymmetric quiver gauge theories. Given a parent quiver with a bouquet of $n$ nodes of rank $1$, invariant under a discrete $S_n$ global symmetry, one can construct a daughter quiver where the bouquet is substituted by a single adjoint $n$ node. Based on the main conjecture in this paper, the daughter quiver corresponds to a theory where the $S_n$ discrete global symmetry is gauged and the new Coulomb branch is a non-Abelian orbifold of the parent Coulomb branch. We demonstrate and test the conjecture for three simply laced families of bouquet quivers and a non-simply laced bouquet quiver with $C_2$ factor in the global symmetry.
Even though for generic $mathcal{N}=1$ theories it is not possible to separate distinct branches of supersymmetric vacua, in this paper we study a special class of $mathcal{N}=1$ SCFTs, these of Class $mathcal{S}_k$ for which it is possible to define Coulomb and Higgs branches precisely as for the $mathcal{N}=2$ theories of Class $mathcal{S}$ from which they descend. We study the BPS operators that parameterise these branches of vacua using the different limits of the superconformal index as well as the Coulomb and Higgs branch Hilbert Series. Finally, with the tools we have developed, we provide a check that six dimensional $(1,1)$ Little String theory can be deconstructed from a toroidal quiver in class $mathcal{S}_k$
A class of 4d $mathcal{N}=3$ SCFTs can be obtained from gauging a discrete subgroup of the global symmetry group of $mathcal{N}=4$ Super Yang-Mills theory. This discrete subgroup contains elements of both the $SU(4)$ R-symmetry group and the $SL(2,mathbb{Z})$ S-duality group of $mathcal{N}=4$ SYM. We give a prescription for how to perform the discrete gauging at the level of the superconformal index and Higgs branch Hilbert series. We interpret and match the information encoded in these indices to known results for rank one $mathcal{N}=3$ theories. Our prescription is easily generalised for the Coloumb branch and the Higgs branch indices of higher rank theories, allowing us to make new predictions for these theories. Most strikingly we find that the Coulomb branches of higher rank theories are generically not-freely generated.
We consider general aspects of N=2 gauge theories in three dimensions, including their multiplet structure, anomalies and non-renormalization theorems. For U(1) gauge theories, we discuss the quantum corrections to the moduli space, and their relation to ``mirror symmetries of 3d N=4 theories. Mirror symmetry is given an interpretation in terms of vortices. For SU(N_c) gauge groups with N_f fundamental flavors, we show that, depending on the number of flavors, there are quantum moduli spaces of vacua with various phenomena near the origin.
We study the classification of 2-dimensional scale-invariant rigid special Kahler (RSK) geometries, which potentially describe the Coulomb branches of N=2 supersymmetric field theories in four dimensions. We show that this classification is equivalent to the solution of a set of polynomial equations by using an integrability condition for the central charge, scale invariance, constraints coming from demanding single-valuedness of physical quantities on the Coulomb branch, and properties of massless BPS states at singularities. We find solutions corresponding to lagrangian scale invariant theories--including the scale invariant G_2 theory not found before in the literature--as well as many new isolated solutions (having no marginal deformations). All our scale-invariant RSK geometries are consistent with an interpretation as effective theories of N=2 superconformal field theories, and, where we can check, turn out to exist as quantum field theories.
We consider the general $mathcal{N}{=},4,$ $d{=},3$ Galilean superalgebra with arbitrary central charges and study its dynamical realizations. Using the nonlinear realization techniques, we introduce a class of actions for $mathcal{N}{=},4$ three-dimensional non-relativistic superparticle, such that they are linear in the central charge Maurer-Cartan one-forms. As a prerequisite to the quantization, we analyze the phase space constraints structure of our model for various choices of the central charges. The first class constraints generate gauge transformations, involving fermionic $kappa$-gauge transformations. The quantization of the model gives rise to the collection of free $mathcal{N}{=},4$, $d{=},3$ Galilean superfields, which can be further employed, e.g., for description of three-dimensional non-relativistic $mathcal{N}{=},4$ supersymmetric theories.