Do you want to publish a course? Click here

Learning models for visual 3D localization with implicit mapping

325   0   0.0 ( 0 )
 Added by Dan Rosenbaum
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We consider learning based methods for visual localization that do not require the construction of explicit maps in the form of point clouds or voxels. The goal is to learn an implicit representation of the environment at a higher, more abstract level. We propose to use a generative approach based on Generative Query Networks (GQNs, Eslami et al. 2018), asking the following questions: 1) Can GQN capture more complex scenes than those it was originally demonstrated on? 2) Can GQN be used for localization in those scenes? To study this approach we consider procedurally generated Minecraft worlds, for which we can generate images of complex 3D scenes along with camera pose coordinates. We first show that GQNs, enhanced with a novel attention mechanism can capture the structure of 3D scenes in Minecraft, as evidenced by their samples. We then apply the models to the localization problem, comparing the results to a discriminative baseline, and comparing the ways each approach captures the task uncertainty.



rate research

Read More

Mapping and localization, preferably from a small number of observations, are fundamental tasks in robotics. We address these tasks by combining spatial structure (differentiable mapping) and end-to-end learning in a novel neural network architecture: the Differentiable Mapping Network (DMN). The DMN constructs a spatially structured view-embedding map and uses it for subsequent visual localization with a particle filter. Since the DMN architecture is end-to-end differentiable, we can jointly learn the map representation and localization using gradient descent. We apply the DMN to sparse visual localization, where a robot needs to localize in a new environment with respect to a small number of images from known viewpoints. We evaluate the DMN using simulated environments and a challenging real-world Street View dataset. We find that the DMN learns effective map representations for visual localization. The benefit of spatial structure increases with larger environments, more viewpoints for mapping, and when training data is scarce. Project website: http://sites.google.com/view/differentiable-mapping
Learning-based 3D reconstruction methods have shown impressive results. However, most methods require 3D supervision which is often hard to obtain for real-world datasets. Recently, several works have proposed differentiable rendering techniques to train reconstruction models from RGB images. Unfortunately, these approaches are currently restricted to voxel- and mesh-based representations, suffering from discretization or low resolution. In this work, we propose a differentiable rendering formulation for implicit shape and texture representations. Implicit representations have recently gained popularity as they represent shape and texture continuously. Our key insight is that depth gradients can be derived analytically using the concept of implicit differentiation. This allows us to learn implicit shape and texture representations directly from RGB images. We experimentally show that our single-view reconstructions rival those learned with full 3D supervision. Moreover, we find that our method can be used for multi-view 3D reconstruction, directly resulting in watertight meshes.
Implicit functions represented as deep learning approximations are powerful for reconstructing 3D surfaces. However, they can only produce static surfaces that are not controllable, which provides limited ability to modify the resulting model by editing its pose or shape parameters. Nevertheless, such features are essential in building flexible models for both computer graphics and computer vision. In this work, we present methodology that combines detail-rich implicit functions and parametric representations in order to reconstruct 3D models of people that remain controllable and accurate even in the presence of clothing. Given sparse 3D point clouds sampled on the surface of a dressed person, we use an Implicit Part Network (IP-Net)to jointly predict the outer 3D surface of the dressed person, the and inner body surface, and the semantic correspondences to a parametric body model. We subsequently use correspondences to fit the body model to our inner surface and then non-rigidly deform it (under a parametric body + displacement model) to the outer surface in order to capture garment, face and hair detail. In quantitative and qualitative experiments with both full body data and hand scans we show that the proposed methodology generalizes, and is effective even given incomplete point clouds collected from single-view depth images. Our models and code can be downloaded from http://virtualhumans.mpi-inf.mpg.de/ipnet.
We present imGHUM, the first holistic generative model of 3D human shape and articulated pose, represented as a signed distance function. In contrast to prior work, we model the full human body implicitly as a function zero-level-set and without the use of an explicit template mesh. We propose a novel network architecture and a learning paradigm, which make it possible to learn a detailed implicit generative model of human pose, shape, and semantics, on par with state-of-the-art mesh-based models. Our model features desired detail for human models, such as articulated pose including hand motion and facial expressions, a broad spectrum of shape variations, and can be queried at arbitrary resolutions and spatial locations. Additionally, our model has attached spatial semantics making it straightforward to establish correspondences between different shape instances, thus enabling applications that are difficult to tackle using classical implicit representations. In extensive experiments, we demonstrate the model accuracy and its applicability to current research problems.
Weakly-supervised action localization requires training a model to localize the action segments in the video given only video level action label. It can be solved under the Multiple Instance Learning (MIL) framework, where a bag (video) contains multiple instances (action segments). Since only the bags label is known, the main challenge is assigning which key instances within the bag to trigger the bags label. Most previous models use attention-based approaches applying attentions to generate the bags representation from instances, and then train it via the bags classification. These models, however, implicitly violate the MIL assumption that instances in negative bags should be uniformly negative. In this work, we explicitly model the key instances assignment as a hidden variable and adopt an Expectation-Maximization (EM) framework. We derive two pseudo-label generation schemes to model the E and M process and iteratively optimize the likelihood lower bound. We show that our EM-MIL approach more accurately models both the learning objective and the MIL assumptions. It achieves state-of-the-art performance on two standard benchmarks, THUMOS14 and ActivityNet1.2.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا