Do you want to publish a course? Click here

Differentiable Mapping Networks: Learning Structured Map Representations for Sparse Visual Localization

177   0   0.0 ( 0 )
 Added by Peter Karkus
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Mapping and localization, preferably from a small number of observations, are fundamental tasks in robotics. We address these tasks by combining spatial structure (differentiable mapping) and end-to-end learning in a novel neural network architecture: the Differentiable Mapping Network (DMN). The DMN constructs a spatially structured view-embedding map and uses it for subsequent visual localization with a particle filter. Since the DMN architecture is end-to-end differentiable, we can jointly learn the map representation and localization using gradient descent. We apply the DMN to sparse visual localization, where a robot needs to localize in a new environment with respect to a small number of images from known viewpoints. We evaluate the DMN using simulated environments and a challenging real-world Street View dataset. We find that the DMN learns effective map representations for visual localization. The benefit of spatial structure increases with larger environments, more viewpoints for mapping, and when training data is scarce. Project website: http://sites.google.com/view/differentiable-mapping



rate research

Read More

In this work we explore a new approach for robots to teach themselves about the world simply by observing it. In particular we investigate the effectiveness of learning task-agnostic representations for continuous control tasks. We extend Time-Contrastive Networks (TCN) that learn from visual observations by embedding multiple frames jointly in the embedding space as opposed to a single frame. We show that by doing so, we are now able to encode both position and velocity attributes significantly more accurately. We test the usefulness of this self-supervised approach in a reinforcement learning setting. We show that the representations learned by agents observing themselves take random actions, or other agents perform tasks successfully, can enable the learning of continuous control policies using algorithms like Proximal Policy Optimization (PPO) using only the learned embeddings as input. We also demonstrate significant improvements on the real-world Pouring dataset with a relative error reduction of 39.4% for motion attributes and 11.1% for static attributes compared to the single-frame baseline. Video results are available at https://sites.google.com/view/actionablerepresentations .
We consider learning based methods for visual localization that do not require the construction of explicit maps in the form of point clouds or voxels. The goal is to learn an implicit representation of the environment at a higher, more abstract level. We propose to use a generative approach based on Generative Query Networks (GQNs, Eslami et al. 2018), asking the following questions: 1) Can GQN capture more complex scenes than those it was originally demonstrated on? 2) Can GQN be used for localization in those scenes? To study this approach we consider procedurally generated Minecraft worlds, for which we can generate images of complex 3D scenes along with camera pose coordinates. We first show that GQNs, enhanced with a novel attention mechanism can capture the structure of 3D scenes in Minecraft, as evidenced by their samples. We then apply the models to the localization problem, comparing the results to a discriminative baseline, and comparing the ways each approach captures the task uncertainty.
Localization is a critically essential and crucial enabler of autonomous robots. While deep learning has made significant strides in many computer vision tasks, it is still yet to make a sizeable impact on improving capabilities of metric visual localization. One of the major hindrances has been the inability of existing Convolutional Neural Network (CNN)-based pose regression methods to generalize to previously unseen places. Our recently introduced CMRNet effectively addresses this limitation by enabling map independent monocular localization in LiDAR-maps. In this paper, we now take it a step further by introducing CMRNet++, which is a significantly more robust model that not only generalizes to new places effectively, but is also independent of the camera parameters. We enable this capability by combining deep learning with geometric techniques, and by moving the metric reasoning outside the learning process. In this way, the weights of the network are not tied to a specific camera. Extensive evaluations of CMRNet++ on three challenging autonomous driving datasets, i.e., KITTI, Argoverse, and Lyft5, show that CMRNet++ outperforms CMRNet as well as other baselines by a large margin. More importantly, for the first-time, we demonstrate the ability of a deep learning approach to accurately localize without any retraining or fine-tuning in a completely new environment and independent of the camera parameters.
Deep learning based localization and mapping has recently attracted significant attention. Instead of creating hand-designed algorithms through exploitation of physical models or geometric theories, deep learning based solutions provide an alternative to solve the problem in a data-driven way. Benefiting from ever-increasing volumes of data and computational power, these methods are fast evolving into a new area that offers accurate and robust systems to track motion and estimate scenes and their structure for real-world applications. In this work, we provide a comprehensive survey, and propose a new taxonomy for localization and mapping using deep learning. We also discuss the limitations of current models, and indicate possible future directions. A wide range of topics are covered, from learning odometry estimation, mapping, to global localization and simultaneous localization and mapping (SLAM). We revisit the problem of perceiving self-motion and scene understanding with on-board sensors, and show how to solve it by integrating these modules into a prospective spatial machine intelligence system (SMIS). It is our hope that this work can connect emerging works from robotics, computer vision and machine learning communities, and serve as a guide for future researchers to apply deep learning to tackle localization and mapping problems.
A crucial capability of real-world intelligent agents is their ability to plan a sequence of actions to achieve their goals in the visual world. In this work, we address the problem of visual semantic planning: the task of predicting a sequence of actions from visual observations that transform a dynamic environment from an initial state to a goal state. Doing so entails knowledge about objects and their affordances, as well as actions and their preconditions and effects. We propose learning these through interacting with a visual and dynamic environment. Our proposed solution involves bootstrapping reinforcement learning with imitation learning. To ensure cross task generalization, we develop a deep predictive model based on successor representations. Our experimental results show near optimal results across a wide range of tasks in the challenging THOR environment.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا