Do you want to publish a course? Click here

Independence of topological surface state and bulk conductances in three-dimensional topological insulators

128   0   0.0 ( 0 )
 Added by Liling Sun
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The archetypical 3D topological insulators Bi2Se3, Bi2Te3 and Sb2Te3 commonly exhibit high bulk conductivities, hindering the characterization of the surface state charge transport. The optimally doped topological insulators Bi2Te2Se and Bi2-xSbxTe2S, however, allow for such characterizations to be made. Here we report the first experimental comparison of the topological surface states and bulk conductances of Bi2Te2Se and Bi1.1Sb0.9Te2S, based on temperature-dependent high-pressure measurements. We find that the surface state conductance at low temperatures remains constant in the face of orders of magnitude increase in the bulk state conductance, revealing in a straightforward way that the topological surface states and bulk states are decoupled at low temperatures, consistent with theoretical models, and confirming topological insulators to be an excellent venue for studying charge transport in 2D Dirac electron systems.



rate research

Read More

We numerically investigate the surface states of a strong topological insulator in the presence of strong electron-electron interactions. We choose a spherical topological insulator geometry to make the surface amenable to a finite size analysis. The single-particle problem maps to that of Landau orbitals on the sphere with a magnetic monopole at the center that has unit strength and opposite sign for electrons with opposite spin. Assuming density-density contact interactions, we find superconducting and anomalous (quantum) Hall phases for attractive and repulsive interactions, respectively, as well as chiral fermion and chiral Majorana fermion boundary modes between different phases. Our setup is preeminently adapted to the search for topologically ordered surface terminations that could be microscopically stabilized by tailored surface interaction profiles.
Gapless surface states on topological insulators are protected from elastic scattering on non-magnetic impurities which makes them promising candidates for low-power electronic applications. However, for wide-spread applications, these states should remain coherent and significantly spin polarized at ambient temperatures. Here, we studied the coherence and spin-structure of the topological states on the surface of a model topological insulator, Bi2Se3, at elevated temperatures in spin and angle-resolved photoemission spectroscopy. We found an extremely weak broadening and essentially no decay of spin polarization of the topological surface state up to room temperature. Our results demonstrate that the topological states on surfaces of topological insulators could serve as a basis for room temperature electronic devices.
We study the surface of a three-dimensional spin chiral $mathrm{Z}_2$ topological insulator (class CII), demonstrating the possibility of its localization. This arises through an interplay of interaction and statistically-symmetric disorder, that confines the gapless fermionic degrees of freedom to a network of one-dimensional helical domain-walls that can be localized. We identify two distinct regimes of this gapless insulating phase, a `clogged regime wherein the network localization is induced by its junctions between otherwise metallic helical domain-walls, and a `fully localized regime of localized domain-walls. The experimental signatures of these regimes are also discussed.
We construct the symmetric-gapped surface states of a fractional topological insulator with electromagnetic $theta$-angle $theta_{em} = frac{pi}{3}$ and a discrete $mathbb{Z}_3$ gauge field. They are the proper generalizations of the T-pfaffian state and pfaffian/anti-semion state and feature an extended periodicity compared with their of integer topological band insulators counterparts. We demonstrate that the surface states have the correct anomalies associated with time-reversal symmetry and charge conservation.
The unoccupied states in topological insulators Bi_2Se_3, PbSb_2Te_4, and Pb_2Bi_2Te_2S_3 are studied by the density functional theory methods. It is shown that a surface state with linear dispersion emerges in the inverted conduction band energy gap at the center of the surface Brillouin zone on the (0001) surface of these insulators. The alternative expression of Z_2 invariant allowed us to show that a necessary condition for the existence of the second Gamma Dirac cone is the presence of local gaps at the time reversal invariant momentum points of the bulk spectrum and change of parity in one of these points.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا