No Arabic abstract
Two-dimensional molybdenum disulfide (MoS2) is an excellent channel material for ultra-thin field effect transistors. However, high contact resistance across the metal-MoS2 interface continues to limit its widespread realization. Here, using atomic-resolution analytical scanning transmission electron microscopy (STEM) together with first principle calculations, we show that this contact problem is a fundamental limitation from the bonding and interactions at the metal-MoS2 interface that cannot be solved by improved deposition engineering. STEM analysis in conjunction with theory shows that when MoS2 is in contact with Ti, a metal with a high affinity to form strong bonds with sulfur, there is a release of S from Mo along with the formation of small Ti/TixSy clusters. A destruction of the MoS2 layers and penetration of metal can also be expected. The design of true high-mobility metal-MoS2 contacts will require the optimal selection of the metal or alloy based on their bonding interactions with the MoS2 surface. This can be advanced by evaluation of binding energies with increasing the number of atoms within metal clusters.
A finite Schottky barrier and large contact resistance between monolayer MoS2 and electrodes are the major bottlenecks in developing high-performance field-effect transistors (FETs) that hinder the study of intrinsic quantum behaviors such as valley-spin transport at low temperature. A gate-tunable graphene electrode platform has been developed to improve the performance of MoS2 FETs. However, intrinsic misalignment between the work function of pristine graphene and the conduction band of MoS2 results in a large threshold voltage for the FETs, because of which Ohmic contact behaviors are observed only at very high gate voltages and carrier concentrations (~1013 cm-2). Here, we present high-performance monolayer MoS2 FETs with Ohmic contact at a modest gate voltage by using a chemical-vapor-deposited (CVD) nitrogen-doped graphene with a high intrinsic electron carrier density. The CVD nitrogen-doped graphene and monolayer MoS2 hybrid FETs platform exhibited a large negative shifted threshold voltage of -54.2 V and barrier-free Ohmic contact under zero gate voltage. Transparent contact by nitrogen-doped graphene led to a 214% enhancement in the on-current and a four-fold improvement in the field-effect carrier mobility of monolayer MoS2 FETs compared with those of a pristine graphene electrode platform. The transport measurements, as well as Raman and X-ray photoelectron spectroscopy analyses before and after thermal annealing, reveal that the atomic C-N bonding in the CVD nitrogen-doped graphene is responsible for the dominant effects of electron doping. Large-scale nitrogen-doped graphene electrodes provide a promising device platform for the development of high-performance devices and the study of unique quantum behaviors.
We study field effect transistor characteristics in etched single layer MoS2 nanoribbon devices of width 50nm with ohmic contacts. We employ a SF6 dry plasma process to etch MoS2 nanoribbons using low etching (RF) power allowing very good control over etching rate. Transconductance measurements reveal a steep sub-threshold slope of 3.5V/dec using a global backgate. Moreover, we measure a high current density of 38 uA/um resulting in high on/off ratio of the order of 10^5. We observe mobility reaching as high as 50 cm^2/V.s with increasing source-drain bias.
The electric field induced quantum phase transition from topological to conventional insulator has been proposed as the basis of a topological field effect transistor [1-4]. In this scheme an electric field can switch on the ballistic flow of charge and spin along dissipationless edges of the two-dimensional (2D) quantum spin Hall insulator [5-9], and when off is a conventional insulator with no conductive channels. Such as topological transistor is promising for low-energy logic circuits [4], which would necessitate electric field-switched materials with conventional and topological bandgaps much greater than room temperature, significantly greater than proposed to date [6-8]. Topological Dirac semimetals(TDS) are promising systems in which to look for topological field-effect switching, as they lie at the boundary between conventional and topological phases [3,10-16]. Here we use scanning probe microscopy/spectroscopy (STM/STS) and angle-resolved photoelectron spectroscopy (ARPES) to show that mono- and bilayer films of TDS Na3Bi [3,17] are 2D topological insulators with bulk bandgaps >400 meV in the absence of electric field. Upon application of electric field by doping with potassium or by close approach of the STM tip, the bandgap can be completely closed then re-opened with conventional gap greater than 100 meV. The large bandgaps in both the conventional and quantum spin Hall phases, much greater than the thermal energy kT = 25 meV at room temperature, suggest that ultrathin Na3Bi is suitable for room temperature topological transistor operation.
For the first time, n-type few-layer MoS2 field-effect transistors with graphene/Ti as the hetero-contacts have been fabricated, showing more than 160 mA/mm drain current at 1 {mu}m gate length with an on-off current ratio of 107. The enhanced electrical characteristic is confirmed in a nearly 2.1 times improvement in on-resistance and a 3.3 times improvement in contact resistance with hetero-contacts compared to the MoS2 FETs without graphene contact layer. Temperature dependent study on MoS2/graphene hetero-contacts has been also performed, still unveiling its Schottky contact nature. Transfer length method and a devised I-V method have been introduced to study the contact resistance and Schottky barrier height in MoS2/graphene /metal hetero-contacts structure.
Superconducting field-effect transitor (SuFET) and Josephson field-effect transistor (JoFET) technologies take advantage of electric field induced control of charge carrier concentration in order to modulate the channel superconducting properties. Despite field-effect is believed to be unaffective for superconducting metals, recent experiments showed electric field dependent modulation of the critical current (IC) in a fully metallic transistor. Yet, the grounding mechanism of this phenomenon is not completely understood. Here, we show the experimental realization of Ti-based Dayem bridge field-effect transistors (DB-FETs) able to control IC of the superconducting channel. Our easy fabrication process DB-FETs show symmetric full suppression of IC for an applied critical gate voltage as low as VCG~+-8V at temperatures reaching about the 85% of the record critical temperature TC~550mK for titanium. The gate-independent TC and normal state resistance (RN) coupled with the increase of resistance in the supercoducting state (RS) for gate voltages close to the critical value (VCG) suggest the creation of field-effect induced metallic puddles in the superconducting sea. Our devices show extremely high values of transconductance (gMAXm~15uA/V at VG~+-6.5V) and variations of Josephson kinetic inductance (LK) with VG of two orders of magnitude. Therefore, the DB-FET appears as an ideal candidate for the realization of superconducting electronics, superconducting qubits, tunable interferometers as well as photon detectors.