Do you want to publish a course? Click here

High-performance monolayer MoS2 field-effect transistor with large-scale nitrogen-doped graphene electrodes for Ohmic contact

62   0   0.0 ( 0 )
 Added by Dongjea Seo
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

A finite Schottky barrier and large contact resistance between monolayer MoS2 and electrodes are the major bottlenecks in developing high-performance field-effect transistors (FETs) that hinder the study of intrinsic quantum behaviors such as valley-spin transport at low temperature. A gate-tunable graphene electrode platform has been developed to improve the performance of MoS2 FETs. However, intrinsic misalignment between the work function of pristine graphene and the conduction band of MoS2 results in a large threshold voltage for the FETs, because of which Ohmic contact behaviors are observed only at very high gate voltages and carrier concentrations (~1013 cm-2). Here, we present high-performance monolayer MoS2 FETs with Ohmic contact at a modest gate voltage by using a chemical-vapor-deposited (CVD) nitrogen-doped graphene with a high intrinsic electron carrier density. The CVD nitrogen-doped graphene and monolayer MoS2 hybrid FETs platform exhibited a large negative shifted threshold voltage of -54.2 V and barrier-free Ohmic contact under zero gate voltage. Transparent contact by nitrogen-doped graphene led to a 214% enhancement in the on-current and a four-fold improvement in the field-effect carrier mobility of monolayer MoS2 FETs compared with those of a pristine graphene electrode platform. The transport measurements, as well as Raman and X-ray photoelectron spectroscopy analyses before and after thermal annealing, reveal that the atomic C-N bonding in the CVD nitrogen-doped graphene is responsible for the dominant effects of electron doping. Large-scale nitrogen-doped graphene electrodes provide a promising device platform for the development of high-performance devices and the study of unique quantum behaviors.



rate research

Read More

The two-dimensional (2D) layered semiconductors such as MoS2 have attracted tremendous interest as a new class of electronic materials. However, there is considerable challenge in making reliable contacts to these atomically thin materials. Here we present a new strategy by using graphene as back electrodes to achieve Ohmic contact to MoS2. With a finite density of states, the Fermi level of graphene can be readily modified by gate potential to ensure a nearly perfect band alignment with MoS2. We demonstrate, for the first time, a transparent contact can be made to MoS2 with essentially zero contact barrier and linear output behaviour at cryogenic temperatures (down to 1.9 K) for both monolayer and multilayer MoS2. Benefiting from the barrier-free transparent contacts, we show that a metal-insulator-transition (MIT) can be observed in a two-terminal MoS2 device, a phenomenon that could be easily masked by Schottky barrier and only seen in four-terminal devices in conventional metal-contacted MoS2 system. With further passivation y born nitride encapsulation, we demonstrate a record high extrinsic (two-terminal) field effect mobility over 1300 cm2/Vs in MoS2.
State-of-the-art carbon nanotube field-effect transistors (CNFETs) behave as Schottky barrier (SB)-modulated transistors. It is known that vertical scaling of the gate oxide significantly improves the performance of these devices. However, decreasing the oxide thickness also results in pronounced ambipolar transistor characteristics and increased drain leakage currents. Using a novel device concept, we have fabricated high-performance, enhancement-mode CNFETs exhibiting n or p-type unipolar behavior, tunable by electrostatic and/or chemical doping, with excellent OFF-state performance and a steep subthreshold swing (S =63 mV/dec). The device design allows for aggressive oxide thickness and gate length scaling while maintaining the desired device characteristics.
Two-dimensional molybdenum disulfide (MoS2) is an excellent channel material for ultra-thin field effect transistors. However, high contact resistance across the metal-MoS2 interface continues to limit its widespread realization. Here, using atomic-resolution analytical scanning transmission electron microscopy (STEM) together with first principle calculations, we show that this contact problem is a fundamental limitation from the bonding and interactions at the metal-MoS2 interface that cannot be solved by improved deposition engineering. STEM analysis in conjunction with theory shows that when MoS2 is in contact with Ti, a metal with a high affinity to form strong bonds with sulfur, there is a release of S from Mo along with the formation of small Ti/TixSy clusters. A destruction of the MoS2 layers and penetration of metal can also be expected. The design of true high-mobility metal-MoS2 contacts will require the optimal selection of the metal or alloy based on their bonding interactions with the MoS2 surface. This can be advanced by evaluation of binding energies with increasing the number of atoms within metal clusters.
For the first time, n-type few-layer MoS2 field-effect transistors with graphene/Ti as the hetero-contacts have been fabricated, showing more than 160 mA/mm drain current at 1 {mu}m gate length with an on-off current ratio of 107. The enhanced electrical characteristic is confirmed in a nearly 2.1 times improvement in on-resistance and a 3.3 times improvement in contact resistance with hetero-contacts compared to the MoS2 FETs without graphene contact layer. Temperature dependent study on MoS2/graphene hetero-contacts has been also performed, still unveiling its Schottky contact nature. Transfer length method and a devised I-V method have been introduced to study the contact resistance and Schottky barrier height in MoS2/graphene /metal hetero-contacts structure.
73 - Sachin Gupta 2019
Two-dimensional MoS2 has emerged as promising material for nanoelectronics and spintronics due to its exotic properties. However, high contact resistance at metal semiconductor MoS2 interface still remains an open issue. Here, we report electronic properties of field effect transistor devices using monolayer MoS2 channels and permalloy (Py) as ferromagnetic (FM) metal contacts. Monolayer MoS2 channels were directly grown on SiO2/Si substrate via chemical vapor deposition technique. The increase in current with back gate voltage shows the tunability of FET characteristics. The Schottky barrier height (SBH) estimated for Py/MoS2 contacts is found to be +28.8 meV (zero-bias), which is the smallest value reported so-far for any direct metal (magnetic or non-magnetic)/monolayer MoS2 contact. With the application of gate voltage (+10 V), SBH shows a drastic reduction down to a value of -6.8 meV. The negative SBH reveals ohmic behavior of Py/MoS2 contacts. Low SBH with controlled ohmic nature of FM contacts is a primary requirement for MoS2 based spintronics and therefore using directly grown MoS2 channels in the present study can pave a path towards high performance devices for large scale applications.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا