No Arabic abstract
Recently, Nunge studied Eulerian polynomials on segmented permutations, namely emph{generalized Eulerian polynomials}, and further asked whether their coefficients form unimodal sequences. In this paper, we prove the stability of the generalized Eulerian polynomials and hence confirm Nunges conjecture. Our proof is based on Brandens stable multivariate Eulerian polynomials. By acting on Brandens polynomials with a stability-preserving linear operator, we get a multivariate refinement of the generalized Eulerian polynomials. To prove Nunges conjecture, we also develop a general approach to obtain generalized Sturm sequences from bivariate stable polynomials.
Inspired by the recent work of Chen and Fu on the e-positivity of trivariate second-order Eulerian polynomials, we show the e-positivity of a family of multivariate k-th order Eulerian polynomials. A relationship between the coefficients of this e-positive expansion and second-order Eulerian numbers is established. Moreover, we present a grammatical proof of the fact that the joint distribution of the ascent, descent and j-plateau statistics over k-Stirling permutations are symmetric distribution. By using symmetric transformation of grammars, a symmetric expansion of trivariate Schett polynomial is also established.
A ballot permutation is a permutation {pi} such that in any prefix of {pi} the descent number is not more than the ascent number. In this article, we obtained a formula in close form for the multivariate generating function of {A(n,d,j)}, which denote the number of permutations of length n with d descents and j as the first letter. Besides, by a series of calculations with generatingfunctionology, we confirm a recent conjecture of Wang and Zhang for ballot permutations.
In this paper we present grammatical interpretations of the alternating Eulerian polynomials of types A and B. As applications, we derive several properties of the type B alternating Eulerian polynomials, including combinatorial expansions, recurrence relations and generating functions. We establish an interesting connection between alternating Eulerian polynomials of type B and left peak polynomials of permutations in the symmetric group, which implies that the type B alternating Eulerian polynomials have gamma-vectors alternate in sign.
A formula of Stembridge states that the permutation peak polynomials and descent polynomials are connected via a quadratique transformation. The aim of this paper is to establish the cycle analogue of Stembridges formula by using cycle peaks and excedances of permutations. We prove a series of new general formulae expressing polynomials counting permutations by various excedance statistics in terms of refined Eulerian polynomials. Our formulae are comparable with Zhuangs generalizations [Adv. in Appl. Math. 90 (2017) 86-144] using descent statistics of permutations. Our methods include permutation enumeration techniques involving variations of classical bijections from permutations to Laguerre histories, explicit continued fraction expansions of combinatorial generating functions in Shin and Zeng [European J. Combin. 33 (2012), no. 2, 111--127] and cycle version of modified Foata-Strehl action. We also prove similar formulae for restricted permutations such as derangements and permutations avoiding certain patterns. Moreover, we provide new combinatorial interpretations for the $gamma$-coefficients of the inversion polynomials restricted on $321$-avoiding permutations.
We prove that the Eulerian polynomial satisfies certain polynomial congruences. Furthermore, these congruences characterize the Eulerian polynomial.