Do you want to publish a course? Click here

Alternating Eulerian polynomials and left peak polynomials

139   0   0.0 ( 0 )
 Added by Shi-Mei Ma
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we present grammatical interpretations of the alternating Eulerian polynomials of types A and B. As applications, we derive several properties of the type B alternating Eulerian polynomials, including combinatorial expansions, recurrence relations and generating functions. We establish an interesting connection between alternating Eulerian polynomials of type B and left peak polynomials of permutations in the symmetric group, which implies that the type B alternating Eulerian polynomials have gamma-vectors alternate in sign.



rate research

Read More

119 - Bin Han , Jianxi Mao , Jiang Zeng 2019
A formula of Stembridge states that the permutation peak polynomials and descent polynomials are connected via a quadratique transformation. The aim of this paper is to establish the cycle analogue of Stembridges formula by using cycle peaks and excedances of permutations. We prove a series of new general formulae expressing polynomials counting permutations by various excedance statistics in terms of refined Eulerian polynomials. Our formulae are comparable with Zhuangs generalizations [Adv. in Appl. Math. 90 (2017) 86-144] using descent statistics of permutations. Our methods include permutation enumeration techniques involving variations of classical bijections from permutations to Laguerre histories, explicit continued fraction expansions of combinatorial generating functions in Shin and Zeng [European J. Combin. 33 (2012), no. 2, 111--127] and cycle version of modified Foata-Strehl action. We also prove similar formulae for restricted permutations such as derangements and permutations avoiding certain patterns. Moreover, we provide new combinatorial interpretations for the $gamma$-coefficients of the inversion polynomials restricted on $321$-avoiding permutations.
We prove that the Eulerian polynomial satisfies certain polynomial congruences. Furthermore, these congruences characterize the Eulerian polynomial.
We consider various properties and manifestations of some sign-alternating univariate polynomials borne of right-triangular integer arrays related to certain generalizations of the Fibonacci sequence. Using a theory of the root geometry of polynomial sequences developed by J. L. Gross, T. Mansour, T. W. Tucker, and D. G. L. Wang, we show that the roots of these `sign-alternating Gibonacci polynomials are real and distinct, and we obtain explicit bounds on these roots. We also derive Binet-type closed expressions for the polynomials. Some of these results are applied to resolve finiteness questions pertaining to a one-player combinatorial game (or puzzle) modelled after a well-known puzzle we call the `Networked-numbers Game. Elsewhere, the first- and second-named authors, in collaboration with A. Nance, have found rank symmetric `diamond-colored distributive lattices naturally related to certain representations of the special linear Lie algebras. Those lattice cardinalities can be computed using sign-alternating Fibonacci polynomials, and the lattice rank generating functions correspond to the rows of some new and easily defined triangular integer arrays. Here, we present Gibonaccian, and in particular Lucasia
In this paper, we study Eulerian polynomials for permutations and signed permutations of the multiset ${1,1,2,2,ldots,n,n}$. Properties of these polynomials, including recurrence relations and unimodality are discussed. In particular, we give a unified proof of the fact that these polynomials are unimodal with modes in the middle.
The alternating descent statistic on permutations was introduced by Chebikin as a variant of the descent statistic. We show that the alternating descent polynomials on permutations are unimodal via a five-term recurrence relation. We also found a quadratic recursion for the alternating major index $q$-analog of the alternating descent polynomials. As an interesting application of this quadratic recursion, we show that $(1+q)^{lfloor n/2rfloor}$ divides $sum_{piinmathfrak{S}_n}q^{rm{altmaj}(pi)}$, where $mathfrak{S}_n$ is the set of all permutations of ${1,2,ldots,n}$ and $rm{altmaj}(pi)$ is the alternating major index of $pi$. This leads us to discover a $q$-analog of $n!=2^{ell}m$, $m$ odd, using the statistic of alternating major index. Moreover, we study the $gamma$-vectors of the alternating descent polynomials by using these two recursions and the ${textbf{cd}}$-index. Further intriguing conjectures are formulated, which indicate that the alternating descent statistic deserves more work.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا