No Arabic abstract
Different terrestrial terahertz applications would benefit from large-format arrays, operating in compact and inexpensive cryocoolers at liquid helium temperature with sensitivity, limited by the 300-K background radiation only. A voltage-biased Transition-Edge Sensor (TES) as a THz detector can have sufficient sensitivity and has a number of advantages important for real applications as linearity of response, high dynamic range and a simple calibration, however it requires a low-noise current readout. Usually, a current amplifier based on Superconducting Quantum-Interference Device (SQUID) is used for readout, but the scalability of this approach is limited due to complexity of the operation and fabrication. Recently, it has been shown that instead of SQUID it is possible to use a current sensor, which is based on the nonlinearity of the kinetic inductance of a current-carrying superconducting stripe. Embedding the stripe into a microwave high-Q superconducting resonator allows for reaching sufficient current sensitivity. More important, it is possible with the resonator approach to scale up to large arrays using Frequency-Division Multiplexing (FDM) in GHz range. Here, we demonstrate the operation of a voltage-biased TES with a microwave kinetic-inductance current amplifier at 4.2 K. We measured the expected intrinsic Noise-Equivalent Power NEP ~$5times 10^{-14} ; rm W/Hz^{1/2}$ and confirmed that a sufficient sensitivity of the readout can be reached in conjunction with a real TES operation. The construction of an array with the improved sensitivity ~ $10^{-15}; rm W/Hz^{1/2}$ at 4.2 K could be realized using a combination of the new current amplifier and already existing TES detectors with improved thermal isolation.
We present a compact current sensor based on a superconducting microwave lumped-element resonator with a nanowire kinetic inductor, operating at 4.2 K. The sensor is suitable for multiplexed readout in GHz range of large-format arrays of cryogenic detectors. The device consists of a lumped-element resonant circuit, fabricated from a single 4-nm-thick superconducting layer of niobium nitride. Thus, the fabrication and operation is significantly simplified in comparison to state-of-the-art approaches. Because the resonant circuit is inductively coupled to the feed line the current to be measured can directly be injected without having the need of an impedance matching circuit, reducing the system complexity. With the proof-of-concept device we measured a current noise floor {delta}Imin of 10 pA/Hz1/2 at 10 kHz. Furthermore, we demonstrate the ability of our sensor to amplify a pulsed response of a superconducting nanowire single-photon detector using a GHz-range carrier for effective frequency-division multiplexing.
We demonstrate photon counting at 1550 nm wavelength using microwave kinetic inductance detectors (MKIDs) made from TiN/Ti/TiN trilayer films with superconducting transition temperature Tc ~ 1.4 K. The detectors have a lumped-element design with a large interdigitated capacitor (IDC) covered by aluminum and inductive photon absorbers whose volume ranges from 0.4 um^3 to 20 um^3. We find that the energy resolution improves as the absorber volume is reduced. We have achieved an energy resolution of 0.22 eV and resolved up to 7 photons per pulse, both greatly improved from previously reported results at 1550 nm wavelength using MKIDs. Further improvements are possible by optimizing the optical coupling to maximize photon absorption into the inductive absorber.
We are preparing for an ultra-high resolution x-ray spectroscopy of kaonic atoms using an x-ray spectrometer based on an array of superconducting transition-edge-sensor microcalorimeters developed by NIST. The instrument has excellent energy resolutions of 2 - 3 eV (FWHM) at 6 keV and a large collecting area of about 20 mm^2. This will open new door to investigate kaon-nucleus strong interaction and provide new accurate charged-kaon mass value.
We present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100-2000eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by conventional grating-based spectrometers. These results show that soft X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry and catalysis. In particular, TES spectrometers have a unique ability to characterize frozen solutions of radiation- and temperature-sensitive samples.
Thermal Kinetic Inductance Detectors (TKIDs) combine the excellent noise performance of traditional bolometers with a radio frequency multiplexing architecture that enables the large detector counts needed for the next generation of millimeter-wave instruments. In this paper, we first discuss the expected noise sources in TKIDs and derive the limits where the phonon noise contribution dominates over the other detector noise terms: generation-recombination, amplifier, and two-level system (TLS) noise. Second, we characterize aluminum TKIDs in a dark environment. We present measurements of TKID resonators with quality factors of about $10^5$ at 80 mK. We also discuss the bolometer thermal conductance, heat capacity, and time constants. These were measured by the use of a resistor on the thermal island to excite the bolometers. These dark aluminum TKIDs demonstrate a noise equivalent power NEP = $2 times 10^{-17} mathrm{W}/mathrm{sqrt{Hz}} $, with a $1/f$ knee at 0.1 Hz, which provides background noise limited performance for ground-based telescopes observing at 150 GHz.