Do you want to publish a course? Click here

Counting Near Infrared Photons with Microwave Kinetic Inductance Detectors

118   0   0.0 ( 0 )
 Added by Yiwen Wang
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate photon counting at 1550 nm wavelength using microwave kinetic inductance detectors (MKIDs) made from TiN/Ti/TiN trilayer films with superconducting transition temperature Tc ~ 1.4 K. The detectors have a lumped-element design with a large interdigitated capacitor (IDC) covered by aluminum and inductive photon absorbers whose volume ranges from 0.4 um^3 to 20 um^3. We find that the energy resolution improves as the absorber volume is reduced. We have achieved an energy resolution of 0.22 eV and resolved up to 7 photons per pulse, both greatly improved from previously reported results at 1550 nm wavelength using MKIDs. Further improvements are possible by optimizing the optical coupling to maximize photon absorption into the inductive absorber.



rate research

Read More

73 - S. Doerner , A. Kuzmin , K. Graf 2017
We present a compact current sensor based on a superconducting microwave lumped-element resonator with a nanowire kinetic inductor, operating at 4.2 K. The sensor is suitable for multiplexed readout in GHz range of large-format arrays of cryogenic detectors. The device consists of a lumped-element resonant circuit, fabricated from a single 4-nm-thick superconducting layer of niobium nitride. Thus, the fabrication and operation is significantly simplified in comparison to state-of-the-art approaches. Because the resonant circuit is inductively coupled to the feed line the current to be measured can directly be injected without having the need of an impedance matching circuit, reducing the system complexity. With the proof-of-concept device we measured a current noise floor {delta}Imin of 10 pA/Hz1/2 at 10 kHz. Furthermore, we demonstrate the ability of our sensor to amplify a pulsed response of a superconducting nanowire single-photon detector using a GHz-range carrier for effective frequency-division multiplexing.
We present the development of a second generation digital readout system for photon counting microwave kinetic inductance detector (MKID) arrays operating in the optical and near-IR wavelength bands. Our system retains much of the core signal processing architecture from the first generation system, but with a significantly higher bandwidth, enabling readout of kilopixel MKID arrays. Each set of readout boards is capable of reading out 1024 MKID pixels multiplexed over 2 GHz of bandwidth; two such units can be placed in parallel to read out a full 2048 pixel microwave feedline over a 4 -- 8 GHz band. As in the first generation readout, our system is capable of identifying, analyzing, and recording photon detection events in real time with a time resolution of order a few microseconds. Here, we describe the hardware and firmware, and present an analysis of the noise properties of the system. We also present a novel algorithm for efficiently suppressing IQ mixer sidebands to below -30 dBc.
Thermal Kinetic Inductance Detectors (TKIDs) combine the excellent noise performance of traditional bolometers with a radio frequency multiplexing architecture that enables the large detector counts needed for the next generation of millimeter-wave instruments. In this paper, we first discuss the expected noise sources in TKIDs and derive the limits where the phonon noise contribution dominates over the other detector noise terms: generation-recombination, amplifier, and two-level system (TLS) noise. Second, we characterize aluminum TKIDs in a dark environment. We present measurements of TKID resonators with quality factors of about $10^5$ at 80 mK. We also discuss the bolometer thermal conductance, heat capacity, and time constants. These were measured by the use of a resistor on the thermal island to excite the bolometers. These dark aluminum TKIDs demonstrate a noise equivalent power NEP = $2 times 10^{-17} mathrm{W}/mathrm{sqrt{Hz}} $, with a $1/f$ knee at 0.1 Hz, which provides background noise limited performance for ground-based telescopes observing at 150 GHz.
We demonstrate photon noise limited performance in both phase and amplitude readout in microwave kinetic inductance detectors (MKIDs) consisting of NbTiN and Al, down to 100 fW of optical power. We simulate the far field beam pattern of the lens-antenna system used to couple radiation into the MKID and derive an aperture efficiency of 75%. This is close to the theoretical maximum of 80% for a single-moded detector. The beam patterns are verified by a detailed analysis of the optical coupling within our measurement setup.
We demonstrate strong negative electrothermal feedback accelerating and linearizing the response of a thermal kinetic inductance detector (TKID). TKIDs are a proposed highly multiplexable replacement to transition-edge sensors and measure power through the temperature-dependent resonant frequency of a superconducting microresonator bolometer. At high readout probe power and probe frequency detuned from the TKID resonant frequency, we observe electrothermal feedback loop gain up to $mathcal L$ $approx$ 16 through measuring the reduction of settling time. We also show that the detector response has no detectable non-linearity over a 38% range of incident power and that the noise-equivalent power is below the design photon noise.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا