Do you want to publish a course? Click here

Electron-electron interactions of the multi-Cooper-pairs in the 1D limit and their role in the formation of global phase coherence in quasi-one-dimensional superconducting nanowire arrays

68   0   0.0 ( 0 )
 Added by Chi Ho Wong
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nanostructuring of superconducting materials to form dense arrays of thin parallel nanowires with significantly large transverse Josephson coupling has proven to be an effective way to increase the upper critical field of superconducting elements by as much as two orders of magnitude as compared to the corresponding bulk materials and, in addition, may cause considerable enhancements in their critical temperatures. Such materials have been realized in the linear pores of mesoporous substrates or exist intrinsically in the form of various quasi-1D crystalline materials. The transverse coupling between the superconducting nanowires is determined by the size-dependent coherence length E0. In order to obtain E0 over the Langer-Ambegaokar- McCumber-Halperin (LAMH) theory, extensive experimental fitting parameters have been required over the last 40 years. We propose a novel Monte Carlo algorithm for determining E0 of the multi-Cooper pair system in the 1D limit. The concepts of uncertainty principle, Pauli-limit, spin flip mechanism, electrostatic interaction, thermal perturbation and co-rotating of electrons are considered in the model. We use Pb nanowires as an example to monitor the size effect of E0 as a result of the modified electron-electron interaction without the need for experimental fitting parameters. We investigate how the coherence length determines the transverse coupling of nanowires in dense arrays. This determines whether or not a global phase-coherent state with zero resistance can be formed in such arrays. Our Monte Carlo results are in very good agreement with experimental data from various types of superconducting nanowire arrays

rate research

Read More

409 - G. Singh , A. Jouan , L. Benfatto 2017
The large diversity of exotic electronic phases displayed by two-dimensional superconductors confronts physicists with new challenges. These include the recently discovered quantum Griffith singularity in atomic Ga films, topological phases in proximized topological insulators and unconventional Ising pairing in transition metal dichalcogenide layers. In LaAlO3/SrTiO3 heterostructures, a gate tunable superconducting electron gas is confined in a quantum well at the interface between two insulating oxides. Remarkably, the gas coexists with both magnetism and strong Rashba spin-orbit coupling and is a candidate system for the creation of Majorana fermions. However, both the origin of superconductivity and the nature of the transition to the normal state over the whole doping range remain elusive. Missing such crucial information impedes harnessing this outstanding system for future superconducting electronics and topological quantum computing. Here we show that the superconducting phase diagram of LaAlO3/SrTiO3 is controlled by the competition between electron pairing and phase coherence. Through resonant microwave experiments, we measure the superfluid stiffness and infer the gap energy as a function of carrier density. Whereas a good agreement with the Bardeen-Cooper-Schrieffer (BCS) theory is observed at high carrier doping, we find that the suppression of Tc at low doping is controlled by the loss of macroscopic phase coherence instead of electron pairing as in standard BCS theory. We find that only a very small fraction of the electrons condenses into the superconducting state and propose that this corresponds to the weak filling of a high-energy dxz/yz band, more apt to host superconductivity
We have investigated the charge dynamics and the nature of many-body interactions in La- and Pr- doped CaFe2As2. From the infrared part of the optical conductivity, we discover that the scattering rate of mobile carriers above 200 K exhibits saturation at the Mott-Ioffe-Regel limit of metallic transport. However, the dc resistivity continues to increase with temperature above 200 K due to the loss of Drude spectral weight. The loss of Drude spectral weight with increasing temperature is seen in a wide temperature range in the uncollapsed tetragonal phase, and this spectral weight is recovered at energy scales about one order of magnitude larger than the Fermi energy scale in these semimetals. The phenomena noted above have been observed previously in other correlated metals in which the dominant interactions are electronic in origin. Further evidence of significant electron-electron interactions is obtained from the presence of quadratic temperature and frequency-dependent terms in the scattering rate at low temperatures and frequencies in the uncollapsed tetragonal structures of La-doped and Pr-doped CaFe2As2. For temperatures below the structure collapse transition in Pr-doped CaFe2As2 at 70 K, the scattering rate decreases due to weakening of electronic correlations, and the Drude spectral weight decreases due to modification of the low-energy electronic structure.
The role of interchain hopping in quasi-one-dimensional (Q-1D) electron systems is investigated by extending the Kadanoff-Wilson renormalization group of one-dimensional (1D) systems to Q-1D systems. This scheme is applied to the extended Hubbard model to calculate the temperature ($T$) dependence of the magnetic susceptibility, $chi (T)$. The calculation is performed by taking into account not only the logarithmic Cooper and Peierls channels, but also the non-logarithmic Landau and finite momentum Cooper channels, which give relevant contributions to the uniform response at finite temperatures. It is shown that the interchain hopping, $t_perp$, reduces $chi (T)$ at low temperatures, while it enhances $chi(T)$ at high temperatures. This notable $t_perp$ dependence is ascribed to the fact that $t_perp$ enhances the antiferromagnetic spin fluctuation at low temperatures, while it suppresses the 1D fluctuation at high temperatures. The result is at variance with the random-phase-approximation approach, which predicts an enhancement of $chi (T)$ by $t_perp$ over the whole temperature range. The influence of both the long-range repulsion and the nesting deviations on $chi (T)$ is further investigated. We discuss the present results in connection with the data of $chi (T)$ in the (TMTTF)$_2X$ and (TMTSF)$_2X$ series of Q-1D organic conductors, and propose a theoretical prediction for the effect of pressure on magnetic susceptibility.
A superconducting phase with an extremely low carrier density of the order of 10^13 cm^-2 is present at LaAlO3-SrTiO3 interfaces. If depleted from charge carriers by means of a gate field, this superconducting phase undergoes a transition into a metallic/insulating state that is still characterized by a gap in the spectral density of states. Measuring and analyzing the critical field of this gap, we provide evidence that macroscopically phase-coherent Cooper pairs are present in the metallic/insulating state. This is characterized by fluctuating vortex-antivortex pairs, and not by individual, immobile Cooper pairs. The measurements furthermore yield the carrier-density dependence of the superconducting coherence length of the two-dimensional system.
We investigate theoretically the effect of the coupling radius on the transfer function in 1D and 2D SQUID arrays with different number of Josephson junctions in parallel and series at 77 K. Our results show a plateauing of the array maximum transfer function with the number of junctions in parallel. The plateauing defines the array coupling radius which we show increases with decreasing the normalised impedance of the SQUID loop inductance. The coupling radius is found to be independent of the number of junctions in series. Finally, we investigate the voltage versus magnetic field response and maximum transfer function of one 1D and two 2D SQIF arrays with different SQUID loop area distributions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا