No Arabic abstract
The large diversity of exotic electronic phases displayed by two-dimensional superconductors confronts physicists with new challenges. These include the recently discovered quantum Griffith singularity in atomic Ga films, topological phases in proximized topological insulators and unconventional Ising pairing in transition metal dichalcogenide layers. In LaAlO3/SrTiO3 heterostructures, a gate tunable superconducting electron gas is confined in a quantum well at the interface between two insulating oxides. Remarkably, the gas coexists with both magnetism and strong Rashba spin-orbit coupling and is a candidate system for the creation of Majorana fermions. However, both the origin of superconductivity and the nature of the transition to the normal state over the whole doping range remain elusive. Missing such crucial information impedes harnessing this outstanding system for future superconducting electronics and topological quantum computing. Here we show that the superconducting phase diagram of LaAlO3/SrTiO3 is controlled by the competition between electron pairing and phase coherence. Through resonant microwave experiments, we measure the superfluid stiffness and infer the gap energy as a function of carrier density. Whereas a good agreement with the Bardeen-Cooper-Schrieffer (BCS) theory is observed at high carrier doping, we find that the suppression of Tc at low doping is controlled by the loss of macroscopic phase coherence instead of electron pairing as in standard BCS theory. We find that only a very small fraction of the electrons condenses into the superconducting state and propose that this corresponds to the weak filling of a high-energy dxz/yz band, more apt to host superconductivity
A detailed phenomenology of low energy excitations is a crucial starting point for microscopic understanding of complex materials such as the cuprate high temperature superconductors. Because of its unique momentum-space discrimination, angle-resolved photoemission spectroscopy (ARPES) is ideally suited for this task in the cuprates where emergent phases, particularly superconductivity and the pseudogap, have anisotropic gap structure in momentum space. We present a comprehensive doping-and-temperature dependence ARPES study of spectral gaps in Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ (Bi-2212), covering much of the superconducting portion of the phase diagram. In the ground state, abrupt changes in near-nodal gap phenomenology give spectroscopic evidence for two potential quantum critical points, p$=$0.19 for the pseudogap phase and p$=$0.076 for another competing phase. Temperature dependence reveals that the pseudogap is not static below T$_c$ and exists p$>$0.19 at higher temperatures. Our data imply a revised phase diagram which reconciles conflicting reports about the endpoint of the pseudogap in the literature, incorporates phase competition between the superconducting gap and pseudogap, and highlights distinct physics at the edge of the superconducting dome.
We uncover that the competition between electron-electron correlations and electron-phonon interactions gives rise to unexpectedly huge enhancement of the superconducting transition temperature, several hundreds percent larger ($geq$ 200 K) than that of the case when only one of the two is taken into account ($sim$ 30 K). Our renormalization group analysis claims that this mechanism for the enhancement of the critical temperature is not limited on superconductivity but applied to various Fermi surface instabilities, proposing an underlying universal structure, which turns out to be essentially identical to that of a recent study [Phys. Rev. Lett. {bf 108}, 046601 (2012)] on the enhancement of the Kondo temperature in the presence of Rashba spin-orbit interactions. We also discuss the stability of superconductivity against nonmagnetic randomness.
The large ($10^2 - 10^5$) and strongly temperature dependent resistive anisotropy $eta = (sigma_{ab}/sigma_c)^{1/2}$ of cuprates perhaps holds the key to understanding their normal state in-plane $sigma_{ab}$ and out-of-plane $sigma_{c}$ conductivities. It can be shown that $eta$ is determined by the ratio of the phase coherence lengths $ell_i$ in the respective directions: $sigma_{ab}/sigma_c = ell_{ab}^2/ell_{c}^2$. In layered crystals in which the out-of-plane transport is incoherent, $ell_{c}$ is fixed, equal to the interlayer spacing. As a result, the T-dependence of $eta$ is determined by that of $ell_{ab}$, and vice versa, the in-plane phase coherence length can be obtained directly by measuring the resistive anisotropy. We present data for hole-doped $YBa_2Cu_3O_y$ ($6.3 < y < 6.9$) and $Y_{1-x}Pr_xBa_2Cu_3O_{7-delta }$ ($0 < x leq 0.55$) and show that $sigma_{ab}$ of crystals with different doping levels can be well described by a two parameter universal function of the in-plane phase coherence length. In the electron-doped $Nd_{2-x}Ce_{x}CuO_{4-y}$, the dependence $sigma_{ab}(eta)$ indicates a crossover from incoherent to coherent transport in the c-direction.
We discuss very low temperature experiments on superconducting micro-coolers made of a double Normal metal - Insulator - Superconductor junction. We investigate with a high resolution the differential conductance of the micro-cooler as well as of additional probe junctions. There is an explicit crossover between the single quasi-particle current and the phase-coherent Andreev current. We establish a thermal model by considering the thermal contribution due to the Andreev current. The related increase of the electron temperature is discussed, including the influence of several parameters like the phase-coherence length or the tunnel junction transparency.
Electron correlations play a central role in iron-based superconductors. In these systems, multiple Fe $3d$-orbitals are active in the low-energy physics, and they are not all degenerate. For these reasons, the role of orbital-selective correlations has been an active topic in the study of the iron-based systems. In this paper, we survey the recent developments on the subject. For the normal state, we emphasize the orbital-selective Mott physics that has been extensively studied, especially in the iron chalcogenides, in the case of electron filling $n sim 6$. In addition, the interplay between orbital selectivity and electronic nematicity is addressed. For the superconducting state, we summarize the initial ideas for orbital-selective pairing, and discuss the recent explosive activities along this direction. We close with some perspectives on several emerging topics. These include the evolution of the orbital-selective correlations, magnetic and nematic orders and superconductivity as the electron filling factor is reduced from $6$ to $5$, as well as the interplay between electron correlations and topological bandstructure in iron-based superconductors.