Do you want to publish a course? Click here

Evidence for Superconducting Phase Coherence in the Metallic/Insulating Regime of the LaAlO3-SrTiO3 Interface Electron System

208   0   0.0 ( 0 )
 Added by Hans Boschker
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

A superconducting phase with an extremely low carrier density of the order of 10^13 cm^-2 is present at LaAlO3-SrTiO3 interfaces. If depleted from charge carriers by means of a gate field, this superconducting phase undergoes a transition into a metallic/insulating state that is still characterized by a gap in the spectral density of states. Measuring and analyzing the critical field of this gap, we provide evidence that macroscopically phase-coherent Cooper pairs are present in the metallic/insulating state. This is characterized by fluctuating vortex-antivortex pairs, and not by individual, immobile Cooper pairs. The measurements furthermore yield the carrier-density dependence of the superconducting coherence length of the two-dimensional system.

rate research

Read More

The superconductor at the LaAlO3-SrTiO3 interface provides a model system for the study of two-dimensional superconductivity in the dilute carrier density limit. Here we experimentally address the pairing mechanism in this superconductor. We extract the electron-phonon spectral function from tunneling spectra and conclude, without ruling out contributions of further pairing channels, that electron-phonon mediated pairing is strong enough to account for the superconducting critical temperatures. Furthermore, we discuss the electron-phonon coupling in relation to the superconducting phase diagram. The electron-phonon spectral function is independent of the carrier density, except for a small part of the phase diagram in the underdoped region. The tunneling measurements reveal that the increase of the chemical potential with increasing carrier density levels off and is zero in the overdoped region of the phase diagram. This indicates that the additionally induced carriers do not populate the band that hosts the superconducting state and that the superconducting order parameter therefore is weakened by the presence of charge carriers in another band.
SrTiO$_3$ is a superconducting semiconductor with a pairing mechanism that is not well understood. SrTiO$_3$ undergoes a ferroelastic transition at $T=$ 105 K, leading to the formation of domains with boundaries that can couple to electronic properties. At two-dimensional SrTiO$_3$ interfaces, the orientation of these ferroelastic domains is known to couple to the electron density, leading to electron-rich regions that favor out-of-plane distortions and electron-poor regions that favor in-plane distortion. Here we show that ferroelastic domain walls support low energy excitations that are analogous to capillary waves at the interface of two fluids. We propose that these capillary waves mediate electron pairing at the LaAlO$_3$/SrTiO$_3$ interface, resulting in superconductivity around the edges of electron-rich regions. This mechanism is consistent with recent experimental results reported by Pai et al. [PRL $bf{120}$, 147001 (2018)]
We present low-temperature and high-field magnetotransport data on SrTiO3-LaAlO3 interfaces. The resistance shows hysteresis in magnetic field and a logarithmic relaxation as a function of time. Oscillations in the magnetoresistance are observed, showing a square root periodicity in the applied magnetic field, both in large-area unstructured samples as well as in a structured sample. An explanation in terms of a commensurability condition of edge states in a highly mobile two-dimensional electron gas between substrate step edges is suggested.
Interplay of spin, charge, orbital and lattice degrees of freedom in oxide heterostructures results in a plethora of fascinating properties, which can be exploited in new generations of electronic devices with enhanced functionalities. The paradigm example is the interface between the two band insulators LaAlO3 and SrTiO3 (LAO/STO) that hosts two-dimensional electron system (2DES). Apart from the mobile charge carriers, this system exhibits a range of intriguing properties such as field effect, superconductivity and ferromagnetism, whose fundamental origins are still debated. Here, we use soft-X-ray angle-resolved photoelectron spectroscopy to penetrate through the LAO overlayer and access charge carriers at the buried interface. The experimental spectral function directly identifies the interface charge carriers as large polarons, emerging from coupling of charge and lattice degrees of freedom, and involving two phonons of different energy and thermal activity. This phenomenon fundamentally limits the carrier mobility and explains its puzzling drop at high temperatures.
248 - E. Maniv , M. Ben Shalom , A. Ron 2015
The interface between the two band insulators SrTiO3 and LaAlO3 unexpectedly has the properties of a two dimensional electron gas. It is even superconducting with a transition temperature, Tc, that can be tuned using gate bias Vg, which controls the number of electrons added or removed from the interface. The gate bias - temperature (Vg, T) phase diagram is characterized by a dome-shaped region where superconductivity occurs, i.e., Tc has a non-monotonic dependence on Vg, similar to many unconventional superconductors. In this communication the frequency of the quantum resistance-oscillations versus inverse magnetic field is reported for various Vg. This frequency follows the same nonmonotonic behavior as Tc; similar trend is seen in the low field limit of the Hall coefficient. We theoretically show that electronic correlations result in a non-monotonic population of the mobile band, which can account for the experimental behavior of the normal transport properties and the superconducting dome.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا