Do you want to publish a course? Click here

Marginally Parametrized Spatio-Temporal Models and Stepwise Maximum Likelihood Estimation

97   0   0.0 ( 0 )
 Added by Matthew Edwards
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

In order to learn the complex features of large spatio-temporal data, models with large parameter sets are often required. However, estimating a large number of parameters is often infeasible due to the computational and memory costs of maximum likelihood estimation (MLE). We introduce the class of marginally parametrized (MP) models, where inference can be performed efficiently with a sequence of marginal (estimated) likelihood functions via stepwise maximum likelihood estimation (SMLE). We provide the conditions under which the stepwise estimators are consistent, and we prove that this class of models includes the diagonal vector autoregressive moving average model. We demonstrate that the parameters of this model can be obtained at least three orders of magnitude faster using SMLE compared to MLE, with only a small loss in statistical efficiency. We apply an MP model to a spatio-temporal global climate data set (in order to learn complex features of interest to climate scientists) consisting of over five million data points, and we demonstrate how estimation can be performed in less than an hour on a laptop.



rate research

Read More

81 - R. Di Mari , R. Rocci , 2018
We consider an equivariant approach imposing data-driven bounds for the variances to avoid singular and spurious solutions in maximum likelihood (ML) estimation of clusterwise linear regression models. We investigate its use in the choice of the number of components and we propose a computational shortcut, which significantly reduces the computational time needed to tune the bounds on the data. In the simulation study and the two real-data applications, we show that the proposed methods guarantee a reliable assessment of the number of components compared to standard unconstrained methods, together with accurate model parameters estimation and cluster recovery.
Mixture models are regularly used in density estimation applications, but the problem of estimating the mixing distribution remains a challenge. Nonparametric maximum likelihood produce estimates of the mixing distribution that are discrete, and these may be hard to interpret when the true mixing distribution is believed to have a smooth density. In this paper, we investigate an algorithm that produces a sequence of smooth estimates that has been conjectured to converge to the nonparametric maximum likelihood estimator. Here we give a rigorous proof of this conjecture, and propose a new data-driven stopping rule that produces smooth near-maximum likelihood estimates of the mixing density, and simulations demonstrate the quality empirical performance of this estimator.
Maximum simulated likelihood estimation of mixed multinomial logit (MMNL) or probit models requires evaluation of a multidimensional integral. Quasi-Monte Carlo (QMC) methods such as shuffled and scrambled Halton sequences and modified Latin hypercube sampling (MLHS) are workhorse methods for integral approximation. A few earlier studies explored the potential of sparse grid quadrature (SGQ), but this approximation suffers from negative weights. As an alternative to QMC and SGQ, we looked into the recently developed designed quadrature (DQ) method. DQ requires fewer nodes to get the same level of accuracy as of QMC and SGQ, is as easy to implement, ensures positivity of weights, and can be created on any general polynomial spaces. We benchmarked DQ against QMC in a Monte Carlo study under different data generating processes with a varying number of random parameters (3, 5, and 10) and variance-covariance structures (diagonal and full). Whereas DQ significantly outperformed QMC in the diagonal variance-covariance scenario, it could also achieve a better model fit and recover true parameters with fewer nodes (i.e., relatively lower computation time) in the full variance-covariance scenario. Finally, we evaluated the performance of DQ in a case study to understand preferences for mobility-on-demand services in New York City. In estimating MMNL with five random parameters, DQ achieved better fit and statistical significance of parameters with just 200 nodes as compared to 1000 QMC draws, making DQ around five times faster than QMC methods.
We introduce the package GraphicalModelsMLE for computing the maximum likelihood estimator (MLE) of a Gaussian graphical model in the computer algebra system Macaulay2. The package allows to compute for the class of loopless mixed graphs. Additional functionality allows to explore the underlying algebraic structure of the model, such as its ML degree and the ideal of score equations.
151 - Xin Gao , Helene Massam 2012
In this article, we discuss the composite likelihood estimation of sparse Gaussian graphical models. When there are symmetry constraints on the concentration matrix or partial correlation matrix, the likelihood estimation can be computational intensive. The composite likelihood offers an alternative formulation of the objective function and yields consistent estimators. When a sparse model is considered, the penalized composite likelihood estimation can yield estimates satisfying both the symmetry and sparsity constraints and possess ORACLE property. Application of the proposed method is demonstrated through simulation studies and a network analysis of a biological data set.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا