No Arabic abstract
We consider an equivariant approach imposing data-driven bounds for the variances to avoid singular and spurious solutions in maximum likelihood (ML) estimation of clusterwise linear regression models. We investigate its use in the choice of the number of components and we propose a computational shortcut, which significantly reduces the computational time needed to tune the bounds on the data. In the simulation study and the two real-data applications, we show that the proposed methods guarantee a reliable assessment of the number of components compared to standard unconstrained methods, together with accurate model parameters estimation and cluster recovery.
Regression mixture models are widely studied in statistics, machine learning and data analysis. Fitting regression mixtures is challenging and is usually performed by maximum likelihood by using the expectation-maximization (EM) algorithm. However, it is well-known that the initialization is crucial for EM. If the initialization is inappropriately performed, the EM algorithm may lead to unsatisfactory results. The EM algorithm also requires the number of clusters to be given a priori; the problem of selecting the number of mixture components requires using model selection criteria to choose one from a set of pre-estimated candidate models. We propose a new fully unsupervised algorithm to learn regression mixture models with unknown number of components. The developed unsupervised learning approach consists in a penalized maximum likelihood estimation carried out by a robust expectation-maximization (EM) algorithm for fitting polynomial, spline and B-spline regressions mixtures. The proposed learning approach is fully unsupervised: 1) it simultaneously infers the model parameters and the optimal number of the regression mixture components from the data as the learning proceeds, rather than in a two-fold scheme as in standard model-based clustering using afterward model selection criteria, and 2) it does not require accurate initialization unlike the standard EM for regression mixtures. The developed approach is applied to curve clustering problems. Numerical experiments on simulated data show that the proposed robust EM algorithm performs well and provides accurate results in terms of robustness with regard initialization and retrieving the optimal partition with the actual number of clusters. An application to real data in the framework of functional data clustering, confirms the benefit of the proposed approach for practical applications.
In order to learn the complex features of large spatio-temporal data, models with large parameter sets are often required. However, estimating a large number of parameters is often infeasible due to the computational and memory costs of maximum likelihood estimation (MLE). We introduce the class of marginally parametrized (MP) models, where inference can be performed efficiently with a sequence of marginal (estimated) likelihood functions via stepwise maximum likelihood estimation (SMLE). We provide the conditions under which the stepwise estimators are consistent, and we prove that this class of models includes the diagonal vector autoregressive moving average model. We demonstrate that the parameters of this model can be obtained at least three orders of magnitude faster using SMLE compared to MLE, with only a small loss in statistical efficiency. We apply an MP model to a spatio-temporal global climate data set (in order to learn complex features of interest to climate scientists) consisting of over five million data points, and we demonstrate how estimation can be performed in less than an hour on a laptop.
Mixture models are regularly used in density estimation applications, but the problem of estimating the mixing distribution remains a challenge. Nonparametric maximum likelihood produce estimates of the mixing distribution that are discrete, and these may be hard to interpret when the true mixing distribution is believed to have a smooth density. In this paper, we investigate an algorithm that produces a sequence of smooth estimates that has been conjectured to converge to the nonparametric maximum likelihood estimator. Here we give a rigorous proof of this conjecture, and propose a new data-driven stopping rule that produces smooth near-maximum likelihood estimates of the mixing density, and simulations demonstrate the quality empirical performance of this estimator.
In this article, we discuss the composite likelihood estimation of sparse Gaussian graphical models. When there are symmetry constraints on the concentration matrix or partial correlation matrix, the likelihood estimation can be computational intensive. The composite likelihood offers an alternative formulation of the objective function and yields consistent estimators. When a sparse model is considered, the penalized composite likelihood estimation can yield estimates satisfying both the symmetry and sparsity constraints and possess ORACLE property. Application of the proposed method is demonstrated through simulation studies and a network analysis of a biological data set.
We introduce the package GraphicalModelsMLE for computing the maximum likelihood estimator (MLE) of a Gaussian graphical model in the computer algebra system Macaulay2. The package allows to compute for the class of loopless mixed graphs. Additional functionality allows to explore the underlying algebraic structure of the model, such as its ML degree and the ideal of score equations.