No Arabic abstract
We report the discovery of a compact multi-planet system orbiting the relatively nearby (78pc) and bright ($K=8.9$) K-star, K2-266 (EPIC248435473). We identify up to six possible planets orbiting K2-266 with estimated periods of P$_b$ = 0.66, P$_{.02}$ = 6.1, P$_c$ = 7.8, P$_d$ = 14.7, P$_e$ = 19.5, and P$_{.06}$ = 56.7 days and radii of R$_P$ = 3.3 R$_{oplus}$, 0.646 R$_{oplus}$, 0.705 R$_{oplus}$, 2.93 R$_{oplus}$, 2.73 R$_{oplus}$, and 0.90 R$_{oplus}$, respectively. We are able to confirm the planetary nature of two of these planets (d & e) from analyzing their transit timing variations ($m_d= 8.9_{-3.8}^{+5.7} M_oplus$ and $m_e=14.3_{-5.0}^{+6.4} M_oplus$), confidently validate the planetary nature of two other planets (b & c), and classify the last two as planetary candidates (K2-266.02 & .06). From a simultaneous fit of all 6 possible planets, we find that K2-266 bs orbit has an inclination of 75.32$^{circ}$ while the other five planets have inclinations of 87-90$^{circ}$. This observed mutual misalignment may indicate that K2-266 b formed differently from the other planets in the system. The brightness of the host star and the relatively large size of the sub-Neptune sized planets d and e make them well-suited for atmospheric characterization efforts with facilities like the Hubble Space Telescope and upcoming James Webb Space Telescope. We also identify an 8.5-day transiting planet candidate orbiting EPIC248435395, a co-moving companion to K2-266.
We report on the discovery and characterization of the transiting planet K2-39b (EPIC 206247743b). With an orbital period of 4.6 days, it is the shortest-period planet orbiting a subgiant star known to date. Such planets are rare, with only a handful of known cases. The reason for this is poorly understood, but may reflect differences in planet occurrence around the relatively high-mass stars that have been surveyed, or may be the result of tidal destruction of such planets. K2-39 is an evolved star with a spectroscopically derived stellar radius and mass of $3.88^{+0.48}_{-0.42}~mathrm{R_odot}$ and $1.53^{+0.13}_{-0.12}~mathrm{M_odot}$, respectively, and a very close-in transiting planet, with $a/R_star = 3.4$. Radial velocity (RV) follow-up using the HARPS, FIES and PFS instruments leads to a planetary mass of $50.3^{+9.7}_{-9.4}~mathrm{M_oplus}$. In combination with a radius measurement of $8.3 pm 1.1~mathrm{R_oplus}$, this results in a mean planetary density of $0.50^{+0.29}_{-0.17}$ g~cm$^{-3}$. We furthermore discover a long-term RV trend, which may be caused by a long-period planet or stellar companion. Because K2-39b has a short orbital period, its existence makes it seem unlikely that tidal destruction is wholly responsible for the differences in planet populations around subgiant and main-sequence stars. Future monitoring of the transits of this system may enable the detection of period decay and constrain the tidal dissipation rates of subgiant stars.
We report the discovery of a new ultra-short-period planet and summarize the properties of all such planets for which the mass and radius have been measured. The new planet, EPIC~228732031b, was discovered in {it K2} Campaign 10. It has a radius of 1.81$^{+0.16}_{-0.12}~R_{oplus}$ and orbits a G dwarf with a period of 8.9 hours. Radial velocities obtained with Magellan/PFS and TNG/HARPS-N show evidence for stellar activity along with orbital motion. We determined the planetary mass using two different methods: (1) the floating chunk offset method, based only on changes in velocity observed on the same night, and (2) a Gaussian process regression based on both the radial-velocity and photometric time series. The results are consistent and lead to a mass measurement of $6.5 pm 1.6~M_{oplus}$, and a mean density of $6.0^{+3.0}_{-2.7}$~g~cm$^{-3}$.
The Neptune desert is a feature seen in the radius-mass-period plane, whereby a notable dearth of short period, Neptune-like planets is found. Here we report the {it TESS} discovery of a new short-period planet in the Neptune desert, orbiting the G-type dwarf TYC,8003-1117-1 (TOI-132). {it TESS} photometry shows transit-like dips at the level of $sim$1400 ppm occurring every $sim$2.11 days. High-precision radial velocity follow-up with HARPS confirmed the planetary nature of the transit signal and provided a semi-amplitude radial velocity variation of $sim$11.5 m s$^{-1}$, which, when combined with the stellar mass of $0.97pm0.06$ $M_{odot}$, provides a planetary mass of 22.83$^{+1.81}_{-1.80}$ $M_{oplus}$. Modeling the {it TESS} high-quality light curve returns a planet radius of 3.43$^{+0.13}_{-0.14}$ $R_{oplus}$, and therefore the planet bulk density is found to be 3.11$^{+0.44}_{-0.450}$ g cm$^{-3}$. Planet structure models suggest that the bulk of the planet mass is in the form of a rocky core, with an atmospheric mass fraction of 4.3$^{+1.2}_{-2.3}$%. TOI-132 b is a {it TESS} Level 1 Science Requirement candidate, and therefore priority follow-up will allow the search for additional planets in the system, whilst helping to constrain low-mass planet formation and evolution models, particularly valuable for better understanding the Neptune desert.
Context: We present the transit and follow-up of a single transit event from Campaign 14 of K2, EPIC248847494b, which has a duration of 54 hours and a 0.18% depth. Aims: Using photometric tools and conducting radial velocity follow-up, we vet and characterise this very strong candidate. Methods: Owing to the long, unknown period, standard follow-up methods needed to be adapted. The transit was fitted using Namaste, and the radial velocity slope was measured and compared to a grid of planet-like orbits with varying masses and periods. These used stellar parameters measured from spectra and the distance as measured by Gaia. Results: Orbiting around a sub-giant star with a radius of 2.70$pm$0.12R$_{rm Sol}$, the planet has a radius of 1.11$_{-0.07}^{+0.07}$R$_{rm Jup}$ and a period of 3650$_{-1130}^{+1280}$ days. The radial velocity measurements constrain the mass to be lower than 13M$_{rm Jup}$, which implies a planet-like object. Conclusions: We have found a planet at 4.5 AU from a single-transit event. After a full radial velocity follow-up campaign, if confirmed, it will be the longest-period transiting planet discovered.
Kepler-408 is one of the 33 planet-hosting {it Kepler} stars for which asteroseismology has been used to investigate the orientation of the stellar rotation axis relative to the planetary orbital plane. The transiting hot Earth, Kepler-408b, has an orbital period of 2.5 days and a radius of $0.86$~$R_oplus$, making it much smaller than the planets for which spin-orbit alignment has been studied using the Rossiter-McLaughlin effect. Because conflicting asteroseismic results have been reported in the literature, we undertake a thorough re-appraisal of this system and perform numerous checks for consistency and robustness. We find that the conflicting results are due to the different models for the low-frequency noise in the power spectrum. A careful treatment of the background noise resolves these conflicts, and shows that the stellar inclination is $is=42^{+5}_{-4}$ degrees. Kepler-408b is, by far, the smallest planet known to have a significantly misaligned orbit.