Do you want to publish a course? Click here

type III representations and modular spectral triples for the noncommutative torus

69   0   0.0 ( 0 )
 Added by Francesco Fidaleo
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

It is well known that for any irrational rotation number $a$, the noncommutative torus $ba_a$ must have representations $pi$ such that the generated von Neumann algebra $pi(ba_a)$ is of type $ty{III}$. Therefore, it could be of interest to exhibit and investigate such kind of representations, together with the associated spectral triples whose twist of the Dirac operator and the corresponding derivation arises from the Tomita modular operator. In the present paper, we show that this program can be carried out, at least when $a$ is a Liouville number satisfying a faster approximation property by rationals. In this case, we exhibit several type $ty{II_infty}$ and $ty{III_l}$, $lin[0,1]$, factor representations and modular spectral triples. The method developed in the present paper can be generalised to CCR algebras based on a locally compact abelian group equipped with a symplectic form.



rate research

Read More

127 - Francesco Fidaleo 2019
For the noncommutative 2-torus, we define and study Fourier transforms arising from representations of states with central supports in the bidual, exhibiting a possibly nontrivial modular structure (i.e. type III representations). We then prove the associated noncommutative analogous of Riemann-Lebesgue Lemma and Hausdorff-Young Theorem. In addition, the $L^p$- convergence result of the Cesaro means (i.e. the Fejer theorem), and the Abel means reproducing the Poisson kernel are also established, providing inversion formulae for the Fourier transforms in $L^p$ spaces, $pin[1,2]$. Finally, in $L^2(M)$ we show how such Fourier transforms diagonalise appropriately some particular cases of modular Dirac operators, the latter being part of a one-parameter family of modular spectral triples naturally associated to the previously mentioned non type ${rm II}_1$ representations.
In this paper, we present a new way to associate a finitely summable spectral triple to a higher-rank graph $Lambda$, via the infinite path space $Lambda^infty$ of $Lambda$. Moreover, we prove that this spectral triple has a close connection to the wavelet decomposition of $Lambda^infty$ which was introduced by Farsi, Gillaspy, Kang, and Packer in 2015. We first introduce the concept of stationary $k$-Bratteli diagrams, in order to associate a family of ultrametric Cantor sets, and their associated Pearson-Bellissard spectral triples, to a finite, strongly connected higher-rank graph $Lambda$. We then study the zeta function, abscissa of convergence, and Dixmier trace associated to the Pearson-Bellissard spectral triples of these Cantor sets, and show these spectral triples are $zeta$-regular in the sense of Pearson and Bellissard. We obtain an integral formula for the Dixmier trace given by integration against a measure $mu$, and show that $mu$ is a rescaled version of the measure $M$ on $Lambda^infty$ which was introduced by an Huef, Laca, Raeburn, and Sims. Finally, we investigate the eigenspaces of a family of Laplace-Beltrami operators associated to the Dirichlet forms of the spectral triples. We show that these eigenspaces refine the wavelet decomposition of $L^2(Lambda^infty, M)$ which was constructed by Farsi et al.
We provide a systematic study of a noncommutative extension of the classical Anzai skew-product for the cartesian product of two copies of the unit circle to the noncommutative 2-tori. In particular, some relevant ergodic properties are proved for these quantum dynamical systems, extending the corresponding ones enjoyed by the classical Anzai skew-product. As an application, for a uniquely ergodic Anzai skew-product $F$ on the noncommutative $2$-torus $ba_a$, $ainbr$, we investigate the pointwise limit, $lim_{nto+infty}frac1{n}sum_{k=0}^{n-1}l^{-k}F^k(x)$, for $xinba_a$ and $l$ a point in the unit circle, and show that there exist examples for which the limit does not exist even in the weak topology.
We present a duality between the category of compact Riemannian spin manifolds (equipped with a given spin bundle and charge conjugation) with isometries as morphisms and a suitable metric category of spectral triples over commutative pre-C*-algebras. We also construct an embedding of a quotient of the category of spectral triples introduced in arXiv:math/0502583v1 into the latter metric category. Finally we discuss a further related duality in the case of orientation and spin-preserving maps between manifolds of fixed dimension.
Let $A$ be a finite subdiagonal algebra in Arvesons sense. Let $H^p(A)$ be the associated noncommutative Hardy spaces, $0<ple8$. We extend to the case of all positive indices most recent results about these spaces, which include notably the Riesz, Szego and inner-outer type factorizations. One new tool of the paper is the contractivity of the underlying conditional expectation on $H^p(A)$ for $p<1$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا