Do you want to publish a course? Click here

Interplanetary Scintillation studies with the Murchison Wide-field Array III: Comparison of source counts and densities for radio sources and their sub-arcsecond components at 162 MHz

58   0   0.0 ( 0 )
 Added by Rajan Chhetri
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use Murchison Widefield Array observations of interplanetary scintillation (IPS) to determine the source counts of point ($<$0.3 arcsecond extent) sources and of all sources with some subarcsecond structure, at 162 MHz. We have developed the methodology to derive these counts directly from the IPS observables, while taking into account changes in sensitivity across the survey area. The counts of sources with compact structure follow the behaviour of the dominant source population above $sim$3 Jy but below this they show Euclidean behaviour. We compare our counts to those predicted by simulations and find a good agreement for our counts of sources with compact structure, but significant disagreement for point source counts. Using low radio frequency SEDs from the GLEAM survey, we classify point sources as Compact Steep-Spectrum (CSS), flat spectrum, or peaked. If we consider the CSS sources to be the more evolved counterparts of the peaked sources, the two categories combined comprise approximately 80% of the point source population. We calculate densities of potential calibrators brighter than 0.4 Jy at low frequencies and find 0.2 sources per square degrees for point sources, rising to 0.7 sources per square degree if sources with more complex arcsecond structure are included. We extrapolate to estimate 4.6 sources per square degrees at 0.04 Jy. We find that a peaked spectrum is an excellent predictor for compactness at low frequencies, increasing the number of good calibrators by a factor of three compared to the usual flat spectrum criterion.



rate research

Read More

Around 10% of bright low-frequency radio sources observed with the Murchison Widefield Array (MWA) show strong Interplanetary Scintillation (IPS) on timescales of a few seconds, implying that almost all their low-frequency radio emission comes from a compact component less than 0.5 arcsec in angular size. Most of these objects are compact steep-spectrum (CSS) or MHz-peaked spectrum (MPS) radio sources. We have used mid-infrared data from the Wide-field Infrared Survey Explorer (WISE) catalogue to search for the host galaxies of 65 strongly-scintillating MWA sources and compare their properties with those of the overall population of bright low-frequency radio sources. We identified WISE mid-infrared counterparts for 91% of the bright sources in a single 900 square degree MWA field, and found that the hosts of the strongly-scintillating sources were typically at least 1 mag fainter in the WISE W1 (3.4 micron) band than the hosts of weakly-scintillating MWA sources of similar radio flux density. This difference arises mainly because the strongly-scintillating sources are more distant. We estimate that strongly-scintillating MWA sources have a median redshift of z ~ 1.5, and that at least 30% of them are likely to lie at z > 2. The recently-developed wide-field IPS technique therefore has the potential to provide a powerful new tool for identifying high-redshift radio galaxies without the need for radio spectral-index selection.
59 - R. Chhetri 2017
We report the first astrophysical application of the technique of wide-field Interplanetary Scintillation (IPS) with the Murchison Widefield Array (MWA). This powerful technique allows us to identify and measure sub-arcsecond compact components in low-frequency radio sources across large areas of sky without the need for long-baseline interferometry or ionospheric calibration. We present the results of a five-minute observation of a 30x30 sq. deg MWA field at 162 MHz with 0.5 second time resolution. Of the 2550 continuum sources detected in this field, 302 (12 per cent) show rapid fluctuations caused by IPS. We find that at least 32% of bright low-frequency radio sources contain a sub-arcsec compact component that contributes over 40% of the total flux density. Perhaps surprisingly, peaked-spectrum radio sources are the dominant population among the strongly-scintillating, low-frequency sources in our sample. While gamma-ray AGN are generally compact, flat-spectrum radio sources at higher frequencies, the 162 MHz properties of many of the Fermi blazars in our field are consistent with a compact component embedded within more extended low-frequency emission. The detection of a known pulsar in our field shows that the wide-field IPS technique is at the threshold of sensitivity needed to detect new pulsars using image plane analysis, and scaling the current MWA sensitivity to that expected for SKA-low implies that large IPS-based pulsar searches will be feasible with SKA. Calibration strategies for the SKA require a better knowledge of the space density of compact sources at low radio frequencies, which IPS observations can now provide.
We describe the parameters of a low-frequency all-sky survey of compact radio sources using Interplanetary Scintillation (IPS), undertaken with the Murchison Widefield Array (MWA). While this survey gives important complementary information to low-resolution survey such as the MWA GLEAM survey, providing information on the subarsecond structure of every source, a survey of this kind has not been attempted in the era of low-frequency imaging arrays such as the MWA and LOFAR. Here we set out the capabilities of such a survey, describing the limitations imposed by the heliocentric observing geometry and by the instrument itself. We demonstrate the potential for IPS measurements at any point on the celestial sphere and we show that at 160MHz, reasonable results can be obtained within 30deg of the ecliptic (2{pi} str: half the sky). We also suggest some observational strategies and describe the first such survey, the MWA Phase I IPS survey. Finally we analyse the potential of the recently-upgraded MWA and discuss the potential of the SKA-low to use IPS to probe sub-mJy flux density levels at sub-arcsecond angular resolution.
Dense aperture arrays provide key benefits in modern astrophysical research. They are flexible, employing cheap receivers, while relying on the ever more sophisticated compute back-end to deal with the complexities of signal processing required for their optimal use. Their advantage is that they offer very large fields of view and are readily scalable to any size, all other things being equal. Since they represent software telescopes, the science cases these arrays can be applied to are quite broad. Here, we describe the calibration and performance of the AARTFAAC-12 instrument, which is composed of the twelve centrally located stations of the LOFAR array. We go into the details of the data acquisition and pre-processing, we describe the newly developed calibration pipeline as well as the noise parameters of the resulting images. We also present the derived radio source counts at 41.7 MHz and 61 MHz.
We analyse a 154 MHz image made from a 12 h observation with the Murchison Widefield Array (MWA) to determine the noise contribution and behaviour of the source counts down to 30 mJy. The MWA image has a bandwidth of 30.72 MHz, a field-of-view within the half-power contour of the primary beam of 570 deg^2, a resolution of 2.3 arcmin and contains 13,458 sources above 5 sigma. The rms noise in the centre of the image is 4-5 mJy/beam. The MWA counts are in excellent agreement with counts from other instruments and are the most precise ever derived in the flux density range 30-200 mJy due to the sky area covered. Using the deepest available source count data, we find that the MWA image is affected by sidelobe confusion noise at the ~3.5 mJy/beam level, due to incompletely-peeled and out-of-image sources, and classical confusion becomes apparent at ~1.7 mJy/beam. This work highlights that (i) further improvements in ionospheric calibration and deconvolution imaging techniques would be required to probe to the classical confusion limit and (ii) the shape of low-frequency source counts, including any flattening towards lower flux densities, must be determined from deeper ~150 MHz surveys as it cannot be directly inferred from higher frequency data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا