No Arabic abstract
Around 10% of bright low-frequency radio sources observed with the Murchison Widefield Array (MWA) show strong Interplanetary Scintillation (IPS) on timescales of a few seconds, implying that almost all their low-frequency radio emission comes from a compact component less than 0.5 arcsec in angular size. Most of these objects are compact steep-spectrum (CSS) or MHz-peaked spectrum (MPS) radio sources. We have used mid-infrared data from the Wide-field Infrared Survey Explorer (WISE) catalogue to search for the host galaxies of 65 strongly-scintillating MWA sources and compare their properties with those of the overall population of bright low-frequency radio sources. We identified WISE mid-infrared counterparts for 91% of the bright sources in a single 900 square degree MWA field, and found that the hosts of the strongly-scintillating sources were typically at least 1 mag fainter in the WISE W1 (3.4 micron) band than the hosts of weakly-scintillating MWA sources of similar radio flux density. This difference arises mainly because the strongly-scintillating sources are more distant. We estimate that strongly-scintillating MWA sources have a median redshift of z ~ 1.5, and that at least 30% of them are likely to lie at z > 2. The recently-developed wide-field IPS technique therefore has the potential to provide a powerful new tool for identifying high-redshift radio galaxies without the need for radio spectral-index selection.
We report the first astrophysical application of the technique of wide-field Interplanetary Scintillation (IPS) with the Murchison Widefield Array (MWA). This powerful technique allows us to identify and measure sub-arcsecond compact components in low-frequency radio sources across large areas of sky without the need for long-baseline interferometry or ionospheric calibration. We present the results of a five-minute observation of a 30x30 sq. deg MWA field at 162 MHz with 0.5 second time resolution. Of the 2550 continuum sources detected in this field, 302 (12 per cent) show rapid fluctuations caused by IPS. We find that at least 32% of bright low-frequency radio sources contain a sub-arcsec compact component that contributes over 40% of the total flux density. Perhaps surprisingly, peaked-spectrum radio sources are the dominant population among the strongly-scintillating, low-frequency sources in our sample. While gamma-ray AGN are generally compact, flat-spectrum radio sources at higher frequencies, the 162 MHz properties of many of the Fermi blazars in our field are consistent with a compact component embedded within more extended low-frequency emission. The detection of a known pulsar in our field shows that the wide-field IPS technique is at the threshold of sensitivity needed to detect new pulsars using image plane analysis, and scaling the current MWA sensitivity to that expected for SKA-low implies that large IPS-based pulsar searches will be feasible with SKA. Calibration strategies for the SKA require a better knowledge of the space density of compact sources at low radio frequencies, which IPS observations can now provide.
We use Murchison Widefield Array observations of interplanetary scintillation (IPS) to determine the source counts of point ($<$0.3 arcsecond extent) sources and of all sources with some subarcsecond structure, at 162 MHz. We have developed the methodology to derive these counts directly from the IPS observables, while taking into account changes in sensitivity across the survey area. The counts of sources with compact structure follow the behaviour of the dominant source population above $sim$3 Jy but below this they show Euclidean behaviour. We compare our counts to those predicted by simulations and find a good agreement for our counts of sources with compact structure, but significant disagreement for point source counts. Using low radio frequency SEDs from the GLEAM survey, we classify point sources as Compact Steep-Spectrum (CSS), flat spectrum, or peaked. If we consider the CSS sources to be the more evolved counterparts of the peaked sources, the two categories combined comprise approximately 80% of the point source population. We calculate densities of potential calibrators brighter than 0.4 Jy at low frequencies and find 0.2 sources per square degrees for point sources, rising to 0.7 sources per square degree if sources with more complex arcsecond structure are included. We extrapolate to estimate 4.6 sources per square degrees at 0.04 Jy. We find that a peaked spectrum is an excellent predictor for compactness at low frequencies, increasing the number of good calibrators by a factor of three compared to the usual flat spectrum criterion.
We describe the parameters of a low-frequency all-sky survey of compact radio sources using Interplanetary Scintillation (IPS), undertaken with the Murchison Widefield Array (MWA). While this survey gives important complementary information to low-resolution survey such as the MWA GLEAM survey, providing information on the subarsecond structure of every source, a survey of this kind has not been attempted in the era of low-frequency imaging arrays such as the MWA and LOFAR. Here we set out the capabilities of such a survey, describing the limitations imposed by the heliocentric observing geometry and by the instrument itself. We demonstrate the potential for IPS measurements at any point on the celestial sphere and we show that at 160MHz, reasonable results can be obtained within 30deg of the ecliptic (2{pi} str: half the sky). We also suggest some observational strategies and describe the first such survey, the MWA Phase I IPS survey. Finally we analyse the potential of the recently-upgraded MWA and discuss the potential of the SKA-low to use IPS to probe sub-mJy flux density levels at sub-arcsecond angular resolution.
The Murchison Widefield Array (MWA) is one of three Square Kilometre Array Precursor telescopes and is located at the Murchison Radio-astronomy Observatory in the Murchison Shire of the mid-west of Western Australia, a location chosen for its extremely low levels of radio frequency interference. The MWA operates at low radio frequencies, 80-300 MHz, with a processed bandwidth of 30.72 MHz for both linear polarisations, and consists of 128 aperture arrays (known as tiles) distributed over a ~3 km diameter area. Novel hybrid hardware/software correlation and a real-time imaging and calibration systems comprise the MWA signal processing backend. In this paper the as-built MWA is described both at a system and sub-system level, the expected performance of the array is presented, and the science goals of the instrument are summarised.
Spectral variability of radio sources encodes information about the conditions of intervening media, source structure, and emission processes. With new low-frequency radio interferometers observing over wide fractional bandwidths, studies of spectral variability for a large population of extragalactic radio sources are now possible. Using two epochs of observations from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey that were taken one year apart, we search for spectral variability across 100--230 MHz for 21,558 sources. We present methodologies for detecting variability in the spectrum between epochs and for classifying the type of variability: either as a change in spectral shape or as a uniform change in flux density across the bandwidth. We identify 323 sources with significant spectral variability over a year-long timescale. Of the 323 variable sources, we classify 51 of these as showing a significant change in spectral shape. Variability is more prevalent in peaked-spectrum sources, analogous to gigahertz-peaked spectrum and compact steep-spectrum sources, compared to typical radio galaxies. We discuss the viability of several potential explanations of the observed spectral variability, such as interstellar scintillation and jet evolution. Our results suggest that the radio sky in the megahertz regime is more dynamic than previously suggested.