Do you want to publish a course? Click here

Magnetic, electronic and transport properties of high-pressure-synthesized chiralmagnets Mn$_{1-x}$Rh$_x$Ge (B20)

79   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on structural, magnetic and transport properties of a new set of the high-pressuresynthesized compounds Mn$_{1-x}$Rh$x$Ge ($0 leq x leq 1$) with the chiral magnetic ordering. The magnetic and transport properties depend substantially on the concentration of rhodium (x) and the pressure. The saturation magnetic moment corresponds to a known high-spin value for pristine MnGe (x = 0) and decreases almost linearly with increasing concentration $x$. In addition, XMCD spectra taken at 10 K and 2 T indicate magnetic polarization of the Rh 4d electron states and Ge $4p$ states, which decreases with $x$, too. In rhodium rich compounds ($x geq 0.5$) the temperature of the magnetic ordering increases significantly with pressure, whereas in manganese rich compounds ($x < 0.5$) the temperature decreases. Three different tendencies are also found for several structural and transport properties. In the intermediate range ($0.3 leq x leq 0.7$) samples are semiconducting in the paramagnetic phase, but become metallic in the magnetically ordered state. We carried out ab initio density-functional calculations of Mn$_{1-x}$Rh$_x$Ge at various concentrations $x$ and traced the evolution of electronic and magnetic properties. The calculation results are in good agreement with the measured magnetic moments and qualitatively explain the observed trends in transport properties.



rate research

Read More

The search and exploration of new materials not found in nature is one of modern trends in pure and applied chemistry. In the present work, we report on experimental and textit{ab initio} density-functional study of the high-pressure-synthesized series of compounds Mn$_{1-x}$(Co,Rh)$_x$Ge. These high-pressure phases remain metastable at normal conditions, therewith they preserve their inherent noncentrosymmetric B20-type structure and chiral magnetism. Of particular interest in these two isovalent systems is the comparative analysis of the effect of $3d$ (Co) and $4d$ (Rh) substitution for Mn, since the $3d$ orbitals are characterized by higher localization and electron interaction than the $4d$ orbitals. The behavior of Mn$_{1-x}$(Co,Rh)$_x$Ge systems is traced as the concentration changes in the range $0 leq x leq 1$. We applied a sensitive experimental and theoretical technique which allowed to refine the shape of the temperature dependencies of magnetic susceptibility $chi(T)$ and thereby provide a new and detailed magnetic phase diagram of Mn$_{1-x}$Co$_x$Ge. It is shown that both systems exhibit a helical magnetic ordering that very strongly depends on the composition $x$. However, the phase diagram of Mn$_{1-x}$Co$_x$Ge differs from that of Mn$_{1-x}$Rh$_x$Ge in that it is characterized by coexistence of two helices in particular regions of concentrations and temperatures.
The composition-dependent behavior of the Dzyaloshinskii-Moriya interaction (DMI), the spin-orbit torque (SOT), as well as anomalous and spin Hall conductivities of Mn$_{1-x}$Fe$_x$Ge alloys have been investigated by first-principles calculations using the relativistic multiple scattering Korringa-Kohn-Rostoker (KKR) formalism. The $D_{rm xx}$ component of the DMI exhibits a strong dependence on the Fe concentration, changing sign at $x approx 0.85$ in line with previous theoretical calculations as well as with experimental results demonstrating the change of spin helicity at $x approx 0.8$. A corresponding behavior with a sign change at $x approx 0.5$ is predicted also for the Fermi sea contribution to the SOT, as this is closely related to the DMI. In the case of anomalous and spin Hall effects it is shown that the calculated Fermi sea contributions are rather small and the composition-dependent behavior of these effects are determined mainly by the electronic states at the Fermi level. The spin-orbit-induced scattering mechanisms responsible for both these effects suggest a common origin of the minimum of the AHE and the sign change of the SHE conductivities.
105 - Y. Shemerliuk , Y. Zhou , Z. Yang 2021
We report an optimized chemical vapor transport method to grow single crystals of (Mn$_{1-x}$Ni$_x$)$_2$P$_2$S$_6$ where x = 0, 0.3, 0.5, 0.7 & 1. Single crystals up to 4,mm,$times$,3,mm,$times$,200,$mu$m were obtained by this method. As-grown crystals characterized by means of scanning electron microscopy, and powder x-ray diffraction measurements. The structural characterization shows that all crystals crystallize in monoclinic symmetry with the space group $C2/m$ (No. 12). We have further investigated the magnetic properties of this series of single crystals. The magnetic measurements of the all as-grown single crystals show long-range antiferromagnetic order along all crystallographic principal axes. Overall, the Neel temperature TN is non-monotonous, with increasing $Ni^{2+}$ doping the temperature of the antiferromagnetic phase transition first decreases from 80 K for pristine Mn$_2$P$_2$S$_6$ (x = 0) up to x = 0.5, and then increases again to 155 K for pure Ni$_2$P$_2$S$_6$ (x = 1). The magnetic anisotropy switches from out-of-plane to in-plane as a function of composition in (Mn$_{1-x}$Ni$_x$)$_2$P$_2$S$_6$ series. Transport studies under hydrostatic pressure on the parent compound Mn$_2$P$_2$S$_6$ evidence an insulator-metal transition at an applied critical pressure of ~22 GPa
The composition dependence of the Yb valence and of the thermal expansion have been studied in the YbGa$_x$Ge$_{2-x}$ system. X-ray diffraction reveals that single-phased samples isostructural to YbGaGe are obtained in the range of 0.9 <= x <= 1.5. The magnetic susceptibility shows that the systems are almost nonmagnetic below room temperature, indicating a stable Yb2+ state for the x range 0.9 <= x <= 1.5. The lattice constants as well as the lattice volume of these systems are found to decrease monotonically with decreasing temperature, suggesting the absence of zero thermal-expansion previously reported for YbGaGe.
Magnetic and transport properties of Ge(1-x-y)Mn(x)Eu(y)Te crystals with chemical compositions 0.041 < x < 0.092 and 0.010 < y < 0.043 are studied. Ferromagnetic order is observed at 150 < T < 160 K. Aggregation of magnetic ions into clusters is found to be the source of almost constant, composition independent Curie temperatures in our samples. Magnetotransport studies show the presence of both negative (at T < 25 K) and linear positive (for 25<T <200 K) magnetoresistance effects (with amplitudes not exceeding 2%) in the studied alloy. Negative magnetoresistance detected at T < 25 K is found to be due to a tunneling of spin-polarized electrons between ferromagnetic clusters. A linear positive magnetoresistance is identified to be geometrical effect related with the presence of ferromagnetic clusters inside semiconductor matrix. The product of the polarization constant and the inter-grain exchange constant, J_P, varies between about 0.13 meV and 0.99 meV. Strong anomalous Hall effect (AHE) is observed for T < T_C with coefficients R_S independent of temperature. The scaling analysis of the AHE leads to a conclusion that this effect is due to a skew scattering mechanism.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا