Do you want to publish a course? Click here

Theoretical and experimental study of high-pressure synthesized B20-type compounds Mn$_{1-x}$(Co,Rh)$_x$Ge

104   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The search and exploration of new materials not found in nature is one of modern trends in pure and applied chemistry. In the present work, we report on experimental and textit{ab initio} density-functional study of the high-pressure-synthesized series of compounds Mn$_{1-x}$(Co,Rh)$_x$Ge. These high-pressure phases remain metastable at normal conditions, therewith they preserve their inherent noncentrosymmetric B20-type structure and chiral magnetism. Of particular interest in these two isovalent systems is the comparative analysis of the effect of $3d$ (Co) and $4d$ (Rh) substitution for Mn, since the $3d$ orbitals are characterized by higher localization and electron interaction than the $4d$ orbitals. The behavior of Mn$_{1-x}$(Co,Rh)$_x$Ge systems is traced as the concentration changes in the range $0 leq x leq 1$. We applied a sensitive experimental and theoretical technique which allowed to refine the shape of the temperature dependencies of magnetic susceptibility $chi(T)$ and thereby provide a new and detailed magnetic phase diagram of Mn$_{1-x}$Co$_x$Ge. It is shown that both systems exhibit a helical magnetic ordering that very strongly depends on the composition $x$. However, the phase diagram of Mn$_{1-x}$Co$_x$Ge differs from that of Mn$_{1-x}$Rh$_x$Ge in that it is characterized by coexistence of two helices in particular regions of concentrations and temperatures.



rate research

Read More

We report on structural, magnetic and transport properties of a new set of the high-pressuresynthesized compounds Mn$_{1-x}$Rh$x$Ge ($0 leq x leq 1$) with the chiral magnetic ordering. The magnetic and transport properties depend substantially on the concentration of rhodium (x) and the pressure. The saturation magnetic moment corresponds to a known high-spin value for pristine MnGe (x = 0) and decreases almost linearly with increasing concentration $x$. In addition, XMCD spectra taken at 10 K and 2 T indicate magnetic polarization of the Rh 4d electron states and Ge $4p$ states, which decreases with $x$, too. In rhodium rich compounds ($x geq 0.5$) the temperature of the magnetic ordering increases significantly with pressure, whereas in manganese rich compounds ($x < 0.5$) the temperature decreases. Three different tendencies are also found for several structural and transport properties. In the intermediate range ($0.3 leq x leq 0.7$) samples are semiconducting in the paramagnetic phase, but become metallic in the magnetically ordered state. We carried out ab initio density-functional calculations of Mn$_{1-x}$Rh$_x$Ge at various concentrations $x$ and traced the evolution of electronic and magnetic properties. The calculation results are in good agreement with the measured magnetic moments and qualitatively explain the observed trends in transport properties.
We present ab initio density-functional study of the noncentrosymmetric B20-type phase of RhGe, which is not found in nature and can be synthesized only at extreme pressures and temperatures. The structural, thermodynamic, electronic, lattice-dynamical, and transport properties of B20-RhGe are calculated, and their evolution with increasing pressure is traced. The temperature dependence of the charge and heat transport properties is evaluated within the semi-classical Boltzmann approach. Using the quasi-harmonic approximation, we determine the range of pressures and temperatures, in which B20-RhGe is stable, and make recommendations for optimizing the synthesis conditions in order to reduce the number of defects that occur in a sample during solidification.
Resonant inelastic X-ray scattering (RIXS) and X-ray absorption (XA) experiments at the iron L- and nitrogen K-edge are combined with high-level first principles restricted active space self-consistent field (RASSCF) calculations for a systematic investigation of the nature of the chemical bond in potassium ferrocyanide in aqueous solution. The atom- and site-specific RIXS excitations allow for direct observation of ligand-to-metal (Fe L-edge) and metal-to-ligand (N K-edge) charge transfer bands and thereby evidence for strong {sigma}-donation and {pi}-back-donation. The effects are identified by comparing experimental and simulated spectra related to both the unoccupied and occupied molecular orbitals in solution.
The magnetic system of the pseudobinary compound Mn$_{1-x}$Co$_{x}$Ge has been studied using small-angle neutron scattering and SQUID-measurements. It is found that Mn$_{1-x}$Co$_{x}$Ge orders magnetically at low temperatures in the whole concentration range of $x in [0 div 0.9]$. Three different states of the magnetic structure have been found: a short-periodic helical state at $x leq 0.45$, a long-periodic helical state at $0.45 < x leq 0.8$, and a ferromagnetic state at $x sim 0.9$. Taking into account that the relatively large helical wavevector $k gg 1$ nm$^{-1}$ is characteristic for systems with mainly Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction, we suggest that the short-periodic helical structure at $x leq 0.45$ is based on an effective RKKY interaction. Also the decay of $k$ with increasing $x$ is ascribed to a reduction of the interaction between second nearest neighbors and, therefore, to an increase of the influence of the Dzyaloshinskiy-Moriya interaction (DMI). As a result of the competition between these two interactions the quantum phase transition from a long-range ordered (LRO) to a short-range ordered (SRO) helical structure has been observed upon increase of the Co-concentration at $x_{c1} sim 0.25$. Further increase of $x$ leads to the appearance of a double peak in the scattering profile at $0.45 < x < 0.7$. The transition from a helical structure to a ferromagnetic state found at $x = 0.9$ is caused by the weakening of DMI as compared to the cubic anisotropy. In summary, the evolution of the magnetic structure of Mn$_{1-x}$Co$_{x}$Ge with increasing $x$ is an example of a continuous transition from a helical structure based on the effective RKKY interaction to a ferromagnetic structure passing through a helical structure based on DMI.
174 - S Chadov , G.H. Fecher , C. Felser 2008
This study presents the effect of local electronic correlations on the Heusler compounds Co$_2$Mn$_{1-x}$Fe$_x$Si as a function of the concentration $x$. The analysis has been performed by means of first-principles band-structure calculations based on the local approximation to spin-density functional theory (LSDA). Correlation effects are treated in terms of the Dynamical Mean-Field Theory (DMFT) and the LSDA+U approach. The formalism is implemented within the Korringa-Kohn-Rostoker (KKR) Greens function method. In good agreement with the available experimental data the magnetic and spectroscopic properties of the compound are explained in terms of strong electronic correlations. In addition the correlation effects have been analysed separately with respect to their static or dynamical origin. To achieve a quantitative description of the electronic structure of Co$_2$Mn$_{1-x}$Fe$_x$Si both static and dynamic correlations must be treated on equal footing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا