Do you want to publish a course? Click here

Ultraviolet Observations of Coronal Mass Ejection Impact on Comet 67P/Churyumov-Gerasimenko by Rosetta Alice

74   0   0.0 ( 0 )
 Added by John Noonan
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Alice ultraviolet spectrograph on the European Space Agency Rosetta spacecraft observed comet 67P/Churyumov-Gerasimenko in its orbit around the Sun for just over two years. Alice observations taken in 2015 October, two months after perihelion, show large increases in the comets Ly-$beta$, O I 1304, O I 1356, and C I 1657 $AA$ atomic emission that initially appeared to indicate gaseous outbursts. However, the Rosetta Plasma Consortium instruments showed a coronal mass ejection (CME) impact at the comet coincident with the emission increases, suggesting that the CME impact may have been the cause of the increased emission. The presence of the semi-forbidden O I 1356 $AA$ emission multiplet is indicative of a substantial increase in dissociative electron impact emission from the coma, suggesting a change in the electron population during the CME impact. The increase in dissociative electron impact could be a result of the interaction between the CME and the coma of 67P or an outburst coincident with the arrival of the CME. The observed dissociative electron impact emission during this period is used to characterize the O2 content of the coma at two peaks during the CME arrival. The mechanism that could cause the relationship between the CME and UV emission brightness is not well constrained, but we present several hypotheses to explain the correlation.



rate research

Read More

149 - Paul D. Feldman 2015
Aims. The Alice far-ultraviolet spectrograph onboard Rosetta is designed to observe emissions from various atomic and molecular species from within the coma of comet 67P/ Churyumov-Gerasimenko and to determine their spatial distribution and evolution with time and heliocentric distance. Methods. Following orbit insertion in August 2014, Alice made observations of the inner coma above the limbs of the nucleus of the comet from cometocentric distances varying between 10 and 80 km. Depending on the position and orientation of the slit relative to the nucleus, emissions of atomic hydrogen and oxygen were initially detected. These emissions are spatially localized close to the nucleus and spatially variable with a strong enhancement above the comets neck at northern latitudes. Weaker emission from atomic carbon and CO were subsequently detected. Results. Analysis of the relative line intensities suggests photoelectron impact dissociation of H2O vapor as the source of the observed H I and O I emissions. The electrons are produced by photoionization of H2O. The observed C I emissions are also attributed to electron impact dissociation, of CO2, and their relative brightness to H I reflects the variation of CO2 to H2O column abundance in the coma.
Following our previous detection of ubiquitous H2O and O2 absorption against the far-UV continuum of stars located near the nucleus of Comet 67P/Churyumov-Gerasimenko, we present a serendipitously observed stellar occultation that occurred on 2015 September 13, approximately one month after the comets perihelion passage. The occultation appears in two consecutive 10-minute spectral images obtained by Alice, Rosettas ultraviolet (700-2100 A) spectrograph, both of which show H2O absorption with column density $>10^{17.5} mathrm{cm}^{-2}$ and significant O2 absorption ($mathrm{O2/H2O} approx 5$-10%). Because the projected distance from the star to the nucleus changes between exposures, our ability to study the H2O column density profile near the nucleus (impact parameters $<1$ km) is unmatched by our previous observations. We find that the H2O and O2 column densities decrease with increasing impact parameter, in accordance with expectations, but the O2 column decreases $sim3$ times more quickly than H2O. When combined with previously published results from stellar appulses, we conclude that the O2 and H2O column densities are highly correlated, and O2/H2O decreases with increasing H2O column.
159 - E. Behar , H. Nilsson , P. Henri 2018
The first 1000 km of the ion tail of comet 67P/Churyumov-Gerasimenko were explored by the European Rosetta spacecraft, 2.7 au away from the Sun. We characterised the dynamics of both the solar wind and the cometary ions on the night-side of the comets atmosphere. We analysed in situ ion and magnetic field measurements and compared the data to a semi-analytical model. The cometary ions are observed flowing close to radially away from the nucleus during the entire excursion. The solar wind is deflected by its interaction with the new-born cometary ions. Two concentric regions appear, an inner region dominated by the expanding cometary ions and an outer region dominated by the solar wind particles. The single night-side excursion operated by Rosetta revealed that the near radial flow of the cometary ions can be explained by the combined action of three different electric field components, resulting from the ion motion, the electron pressure gradients, and the magnetic field draping. The observed solar wind deflection is governed mostly by the motional electric field.
103 - Paul D. Feldman 2016
Alice is a far-ultraviolet imaging spectrograph onboard Rosetta that, amongst multiple objectives, is designed to observe emissions from various atomic and molecular species from within the coma of comet 67P/Churyumov-Gerasimenko. The initial observations, made following orbit insertion in August 2014, showed emissions of atomic hydrogen and oxygen spatially localized close to the nucleus and attributed to photoelectron impact dissociation of H2O vapor. Weaker emissions from atomic carbon were subsequently detected and also attributed to electron impact dissociation, of CO2, the relative H I and C I line intensities reflecting the variation of CO2 to H2O column abundance along the line-of-sight through the coma. Beginning in mid-April 2015, Alice sporadically observed a number of outbursts above the sunward limb characterized by sudden increases in the atomic emissions, particularly the semi-forbidden O I 1356 multiplet, over a period of 10-30 minutes, without a corresponding enhancement in long wavelength solar reflected light characteristic of dust production. A large increase in the brightness ratio O I 1356/O I 1304 suggests O2 as the principal source of the additional gas. These outbursts do not correlate with any of the visible images of outbursts taken with either OSIRIS or the navigation camera. Beginning in June 2015 the nature of the Alice spectrum changed considerably with CO Fourth Positive band emission observed continuously, varying with pointing but otherwise fairly constant in time. However, CO does not appear to be a major driver of any of the observed outbursts.
We have detected H$_2$O and O$_2$ absorption against the far-UV continuum of stars located on lines of sight near the nucleus of Comet 67P/Churyumov-Gerasimenko using the Alice imaging spectrograph on Rosetta. These stellar appulses occurred at impact parameters of $rho=4$-20 km, and heliocentric distances ranging from $R_h=-1.8$ to 2.3 AU (negative values indicate pre-perihelion observations). The measured H$_2$O column densities agree well with nearly contemporaneous values measured by VIRTIS-H. The clear detection of O$_2$ independently confirms the initial detection by the ROSINA mass spectrometer; however, the relative abundance of O$_2$/H$_2$O derived from the stellar spectra (11%-68%, with a median value of 25%) is considerably larger than published values found by ROSINA. The cause of this difference is unclear, but potentially related to ROSINA measuring number density at the spacecraft position while Alice measures column density along a line of sight that passes near the nucleus.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا