Do you want to publish a course? Click here

The root of a comet tail - Rosetta ion observations at comet 67P/Churyumov--Gerasimenko

160   0   0.0 ( 0 )
 Added by Etienne Behar
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The first 1000 km of the ion tail of comet 67P/Churyumov-Gerasimenko were explored by the European Rosetta spacecraft, 2.7 au away from the Sun. We characterised the dynamics of both the solar wind and the cometary ions on the night-side of the comets atmosphere. We analysed in situ ion and magnetic field measurements and compared the data to a semi-analytical model. The cometary ions are observed flowing close to radially away from the nucleus during the entire excursion. The solar wind is deflected by its interaction with the new-born cometary ions. Two concentric regions appear, an inner region dominated by the expanding cometary ions and an outer region dominated by the solar wind particles. The single night-side excursion operated by Rosetta revealed that the near radial flow of the cometary ions can be explained by the combined action of three different electric field components, resulting from the ion motion, the electron pressure gradients, and the magnetic field draping. The observed solar wind deflection is governed mostly by the motional electric field.



rate research

Read More

Comets are thought to preserve almost pristine dust particles, thus providing a unique sample of the properties of the early solar nebula. The microscopic properties of this dust played a key part in particle aggregation during the formation of the Solar System. Cometary dust was previously considered to comprise irregular, fluffy agglomerates on the basis of interpretations of remote observations in the visible and infrared and the study of chondritic porous interplanetary dust particles that were thought, but not proved, to originate in comets. Although the dust returned by an earlier mission has provided detailed mineralogy of particles from comet 81P/Wild, the fine-grained aggregate component was strongly modified during collection. Here we report in situ measurements of dust particles at comet 67P/Churyumov-Gerasimenko. The particles are aggregates of smaller, elongated grains, with structures at distinct sizes indicating hierarchical aggregation. Topographic images of selected dust particles with sizes of one micrometre to a few tens of micrometres show a variety of morphologies, including compact single grains and large porous aggregate particles, similar to chondritic porous interplanetary dust particles. The measured grain elongations are similar to the value inferred for interstellar dust and support the idea that such grains could represent a fraction of the building blocks of comets. In the subsequent growth phase, hierarchical agglomeration could be a dominant process and would produce aggregates that stick more easily at higher masses and velocities than homogeneous dust particles. The presence of hierarchical dust aggregates in the near-surface of the nucleus of comet 67P also provides a mechanism for lowering the tensile strength of the dust layer and aiding dust release.
Observations of comet 67P/Churyumov-Gerasimenko were performed with MUSE at large heliocentric distances post-perihelion, between March 3 and 7, 2016. Those observations were part of a simultaneous ground-based campaign aimed at providing large-scale information about comet 67P that complement the ESA/Rosetta mission. We obtained a total of 38 datacubes over 5 nights. We take advantage of the integral field unit (IFU) nature of the instrument to study simultaneously the spectrum of 67Ps dust and its spatial distribution in the coma. We also look for evidence of gas emission in the coma. We produce a high quality spectrum of the dust coma over the optical range that could be used as a reference for future comet observations with the instrument. The slope of the dust reflectivity is of 10%$/100$ nm over the 480-900 nm interval, with a shallower slope towards redder wavelengths. We use the $mathrm{Afrho}$ to quantify the dust production and measure values of 65$pm$4 cm, 75$pm$4 cm, and 82$pm$4 cm in the V, R, and I bands respectively. We detect several jets in the coma, as well as the dust trail. Finally, using a novel method combining spectral and spatial information, we detect the forbidden oxygen emission line at 630 nm. Using this line we derive a water production rate of $1.5pm0.6 times 10^{26} mathrm{molec./s}$, assuming all oxygen atoms come from the photo-dissociation of water.
The Alice ultraviolet spectrograph on the European Space Agency Rosetta spacecraft observed comet 67P/Churyumov-Gerasimenko in its orbit around the Sun for just over two years. Alice observations taken in 2015 October, two months after perihelion, show large increases in the comets Ly-$beta$, O I 1304, O I 1356, and C I 1657 $AA$ atomic emission that initially appeared to indicate gaseous outbursts. However, the Rosetta Plasma Consortium instruments showed a coronal mass ejection (CME) impact at the comet coincident with the emission increases, suggesting that the CME impact may have been the cause of the increased emission. The presence of the semi-forbidden O I 1356 $AA$ emission multiplet is indicative of a substantial increase in dissociative electron impact emission from the coma, suggesting a change in the electron population during the CME impact. The increase in dissociative electron impact could be a result of the interaction between the CME and the coma of 67P or an outburst coincident with the arrival of the CME. The observed dissociative electron impact emission during this period is used to characterize the O2 content of the coma at two peaks during the CME arrival. The mechanism that could cause the relationship between the CME and UV emission brightness is not well constrained, but we present several hypotheses to explain the correlation.
Dust is an important constituent in cometary comae; its analysis is one of the major objectives of ESAs Rosetta mission to comet 67P/Churyumov-Gerasimenko (C-G). Several instruments aboard Rosetta are dedicated to studying various aspects of dust in the cometary coma, all of which require a certain level of exposure to dust to achieve their goals. At the same time, impacts of dust particles can constitute a hazard to the spacecraft. To conciliate the demands of dust collection instruments and spacecraft safety, it is desirable to assess the dust environment in the coma even before the arrival of Rosetta. We describe the present status of modelling the dust coma of 67P/C-G and predict the speed and flux of dust in the coma, the dust fluence on a spacecraft along sample trajectories, and the radiation environment in the coma. The model will need to be refined when more details of the coma are revealed by observations. An overview of astronomical observations of 67P/C-G is given and model parameters are derived from these data where possible. For quantities not yet measured for 67P/C-G, we use values obtained for other comets. One of the most important and most controversial parameters is the dust mass distribution. We summarise the mass distribution functions derived from the in-situ measurements at comet 1P/Halley in 1986. For 67P/C-G, constraining the mass distribution is currently only possible by the analysis of astronomical images. We find that the results from such analyses are at present rather heterogeneous, and we identify a need to find a model that is reconcilable with all available observations.
The Southern hemisphere of the 67P/Churyumov-Gerasimenko comet has become visible from Rosetta only since March 2015. It was illuminated during the perihelion passage and therefore it contains the regions that experienced the strongest heating and erosion rate, thus exposing the subsurface most pristine material. In this work we investigate, thanks to the OSIRIS images, the geomorphology, the spectrophotometry and some transient events of two Southern hemisphere regions: Anhur and part of Bes. Bes is dominated by outcropping consolidated terrain covered with fine particle deposits, while Anhur appears strongly eroded with elongated canyon-like structures, scarp retreats, different kinds of deposits, and degraded sequences of strata indicating a pervasive layering. We discovered a new 140 m long and 10 m high scarp formed in the Anhur/Bes boundary during/after the perihelion passage, close to the area where exposed CO$_2$ and H$_2$O ices were previously detected. Several jets have been observed originating from these regions, including the strong perihelion outburst, an active pit, and a faint optically thick dust plume. We identify several areas with a relatively bluer slope (i.e. a lower spectral slope value) than their surroundings, indicating a surface composition enriched with some water ice. These spectrally bluer areas are observed especially in talus and gravitational accumulation deposits where freshly exposed material had fallen from nearby scarps and cliffs. The investigated regions become spectrally redder beyond 2 au outbound when the dust mantle became thicker, masking the underlying ice-rich layers.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا