Do you want to publish a course? Click here

Evolution from Ferromagnetism to Antiferromagnetism in Yb(Rh1-xCox)2Si2

108   0   0.0 ( 0 )
 Added by Manuel Brando
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Yb(Rh1-xCox)2Si2 is a model system to address two challenging problems in the field of strongly correlated electron systems: The first is the intriguing competition between ferromagnetic (FM) and antiferromagnetic (AFM) order when approaching a magnetic quantum critical point (QCP). The second is the occurrence of magnetic order along a very hard crystalline electric field (CEF) direction, i.e. along the one with the smallest available magnetic moment. Here, we present a detailed study of the evolution of the magnetic order in this system from a FM state with moments along the very hard c direction at x = 0.27 towards the yet unknown magnetic state at x = 0. We first observe a transition towards an AFM canted state with decreasing x and then to a pure AFM state. This confirms that the QCP in YbRh2Si2 is AFM, but the phase diagram is very similar to those observed in some inherently FM systems like NbFe2 and CeRuPO, which suggests that the basic underlying instability might be FM. Despite the huge CEF anisotropy the ordered moment retains a component along the c-axis also in the AFM state. The huge CEF anisotropy in Yb(Rh1-xCox)2Si2 excludes that this hard-axis ordering originates from a competing exchange anisotropy as often proposed for other heavy-fermion systems. Instead, it points to an order-by-disorder based mechanism.



rate research

Read More

We present a study of the evolution of magnetism from the quantum critical system YbRh2Si2 to the stable trivalent Yb system YbCo2Si2. Single crystals of Yb(Rh_(1-x)Co_x)2Si2 were grown for 0 < x < 1 and studied by means of magnetic susceptibility, electrical resistivity, and specific heat measurements, as well as photoemission spectroscopy. The results evidence a complex magnetic phase diagram, with a non-monotonic evolution of T_N and two successive transitions for some compositions resulting in two tricritical points. The strong similarity with the phase diagram of YbRh2Si2 under pressure indicates that Co substitution basically corresponds to the application of positive chemical pressure. Analysis of the data proves a strong reduction of the Kondo temperature T_K with increasing Co content, T_K becoming smaller than T_N for x ~ 0.5, implying a strong localization of the 4f electrons. Furthermore, low-temperature susceptibility data confirm a competition between ferromagnetic and antiferromagnetic exchange. The series Yb(Rh_(1-x)Co_x)2Si2 provides an excellent experimental opportunity to gain a deeper understanding of the magnetism at the quantum critical point in the vicinity of YbRh2Si2 where the antiferromagnetic phase disappears (T_N=>0).
Results of dc magnetization study are presented showing interesting thermomagnetic history effects across the antiferromagnetic to ferromagnetic transition in Ce(Fe$_{0.96}$Al$_{0.04})_2$. Specifically, we observe (i)ZFC/FC irreversibility rising with increasing field; (ii) virgin curve lying outside the envelope M-H curve. We argue that these effects are quite different from the characteristics seen in spin-glasses or in hard ferromagnets; they can be understood as metastabilities associated with a first order magnetic phase transition.
Taking the pseudobinary C15 Laves phase compound Ce(Fe$_{0.96}$Al$_{0.04}$)$_2$ as a paradigm for studying a ferromagnetic to antiferromagnetic phase transition, we present interesting thermomagnetic history effects in magnetotransport as well as magnetisation measurements across this phase transition. A comparison is made with history effects observed across the ferromagnetic to antiferromagnetic transition in R$_{0.5}$Sr$_{0.5}$MnO$_3$ crystals.
Given the parallelism between the physical properties of Ce and Yb based magnets and heavy fermions due to the electron-hole symmetry, it has been rather odd that the transition temperature of the Yb based compounds is normally very small, as low as $sim$ 1 K or even lower, whereas Ce counterparts may often have the transition temperature well exceeding 10 K. Here, we report our experimental discovery of the transition temperature reaching 20 K for the first time in a Yb based compound at ambient pressure. The Mn substitution at the Al site in an intermediate valence state of $alpha$-YbAlB$_{4}$ not only induces antiferromagnetic transition at a record high temperature of 20 K but also transforms the heavy fermion liquid state in $alpha$-YbAlB$_{4}$ into a highly resistive metallic state proximate to a Kondo insulator.
Measurements of the specific heat of antiferromagnetic CeRhIn5, to 21 kbar, and for 21 kbar to 70 kOe, show a discontinuous change from an antiferromagnetic ground state below 15 kbar to a superconducting ground state above, and suggest that it is accompanied by a weak thermodynamic first-order transition. Bulk superconductivity appears, apparently with d-wave electron pairing, at the critical pressure, 15 kbar; with further increase in pressure a residual temperature-proportional term in the specific heat disappears.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا