Do you want to publish a course? Click here

Electron beam driven generation of frequency-tunable isolated relativistic sub-cycle pulses

300   0   0.0 ( 0 )
 Added by Illia Thiele
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a novel scheme for frequency-tunable sub-cycle electromagnetic pulse generation. To this end a pump electron beam is injected into an electromagnetic seed pulse as the latter is reflected by a mirror. The electron beam is shown to be able to amplify the field of the seed pulse while upshifting its central frequency and reducing its number of cycles. We demonstrate the amplification by means of 1D and 2D particle-in-cell simulations. In order to explain and optimize the process, a model based on fluid theory is proposed. We estimate that using currently available electron beams and terahertz pulse sources, our scheme is able to produce mJ-strong mid-infrared sub-cycle pulses.



rate research

Read More

Sources of intense, ultra-short electromagnetic pulses enable applications such as attosecond pulse generation, control of electron motion in solids and the observation of reaction dynamics at the electronic level. For such applications both high-intensity and carrier envelope phase~(CEP) tunability are beneficial, yet hard to obtain with current methods. In this work we present a new scheme for generation of isolated CEP-tunable intense sub-cycle pulses with central frequencies that range from the midinfrared to the ultraviolet. It utilizes an intense laser pulse which drives a wake in a plasma, co-propagating with a long-wavelength seed pulse. The moving electron density spike of the wake amplifies the seed and forms a sub-cycle pulse. Controlling the CEP of the seed pulse, or the delay between driver and seed leads to CEP-tunability, while frequency tunability can be achieved by adjusting the laser and plasma parameters. Our 2D and 3D Particle-In-Cell simulations predict laser-to-sub-cycle-pulse conversion efficiencies up to 1%, resulting in relativistically intense sub-cycle pulses.
Laser-plasma electron accelerators can be used to produce high-intensity X-rays, as electrons accelerated in wakefields emit radiation due to betatron oscillations.Such X-ray sources inherit the features of the electron beam; sub-femtosecond electron bunches produce betatron sources of the same duration, which in turn allow probing matter on ultrashort time scales. In this paper we show, via Particle-in-Cell simulations, that attosecond electron bunches can be obtained using low-energy, ultra-short laser beams both in the self-injection and the controlled injection regimes at low plasma densities. However, only in the controlled regime does the electron injection lead to a stable, isolated attosecond electron bunch. Such ultrashort electron bunches are shown to emit attosecond X-ray bursts with high brilliance
82 - S. Malko , X.Vaisseau , F.Perez 2019
The double laser pulse approach to relativistic electron beam (REB) collimation has been investigated at the LULI-ELFIE facility. In this scheme, the magnetic field generated by the first laser-driven REB is used to guide a second delayed REB. We show how electron beam collimation can be controlled by properly adjusting laser parameters. By changing the ratio of focus size and the delay time between the two pulses we found a maximum of electron beam collimation clearly dependent on the focal spot size ratio of the two laser pulses and related to the magnetic field dynamics. Cu-K alpha and CTR imaging diagnostics were implemented to evaluate the collimation effects on the respectively low energy (< 100 keV) and high energy (> MeV) components of the REB.
Three dimensional (3D) relativistic electromagnetic sub-cycle solitons were observed in 3D Particle-in-Cell simulations of an intense short laser pulse propagation in an underdense plasma. Their structure resembles that of an oscillating electric dipole with a poloidal electric field and a toroidal magnetic field that oscillate in-phase with the electron density with frequency below the Langmuir frequency. On the ion time scale the soliton undergoes a Coulomb explosion of its core, resulting in ion acceleration, and then evolves into a slowly expanding quasi-neutral cavity.
Coulomb interaction between charged particles is a well-known phenomenon in many areas of researches. In general the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron beam based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا