Do you want to publish a course? Click here

Fidelity-based Probabilistic Q-learning for Control of Quantum Systems

70   0   0.0 ( 0 )
 Added by Daoyi Dong
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

The balance between exploration and exploitation is a key problem for reinforcement learning methods, especially for Q-learning. In this paper, a fidelity-based probabilistic Q-learning (FPQL) approach is presented to naturally solve this problem and applied for learning control of quantum systems. In this approach, fidelity is adopted to help direct the learning process and the probability of each action to be selected at a certain state is updated iteratively along with the learning process, which leads to a natural exploration strategy instead of a pointed one with configured parameters. A probabilistic Q-learning (PQL) algorithm is first presented to demonstrate the basic idea of probabilistic action selection. Then the FPQL algorithm is presented for learning control of quantum systems. Two examples (a spin- 1/2 system and a lamda-type atomic system) are demonstrated to test the performance of the FPQL algorithm. The results show that FPQL algorithms attain a better balance between exploration and exploitation, and can also avoid local optimal policies and accelerate the learning process.



rate research

Read More

136 - Daoyi Dong 2021
This paper provides a brief introduction to learning control of quantum systems. In particular, the following aspects are outlined, including gradient-based learning for optimal control of quantum systems, evolutionary computation for learning control of quantum systems, learning-based quantum robust control, and reinforcement learning for quantum control.
Dealing with high variance is a significant challenge in model-free reinforcement learning (RL). Existing methods are unreliable, exhibiting high variance in performance from run to run using different initializations/seeds. Focusing on problems arising in continuous control, we propose a functional regularization approach to augmenting model-free RL. In particular, we regularize the behavior of the deep policy to be similar to a policy prior, i.e., we regularize in function space. We show that functional regularization yields a bias-variance trade-off, and propose an adaptive tuning strategy to optimize this trade-off. When the policy prior has control-theoretic stability guarantees, we further show that this regularization approximately preserves those stability guarantees throughout learning. We validate our approach empirically on a range of settings, and demonstrate significantly reduced variance, guaranteed dynamic stability, and more efficient learning than deep RL alone.
This paper proposes a black box based approach for analysing deep neural networks (DNNs). We view a DNN as a function $boldsymbol{f}$ from inputs to outputs, and consider the local robustness property for a given input. Based on scenario optimization technique in robust control design, we learn the score difference function $f_i-f_ell$ with respect to the target label $ell$ and attacking label $i$. We use a linear template over the input pixels, and learn the corresponding coefficients of the score difference function, based on a reduction to a linear programming (LP) problems. To make it scalable, we propose optimizations including components based learning and focused learning. The learned function offers a probably approximately correct (PAC) guarantee for the robustness property. Since the score difference function is an approximation of the local behaviour of the DNN, it can be used to generate potential adversarial examples, and the original network can be used to check whether they are spurious or not. Finally, we focus on the input pixels with large absolute coefficients, and use them to explain the attacking scenario. We have implemented our approach in a prototypical tool DeepPAC. Our experimental results show that our framework can handle very large neural networks like ResNet152 with $6.5$M neurons, and often generates adversarial examples which are very close to the decision boundary.
This paper focuses on finding reinforcement learning policies for control systems with hard state and action constraints. Despite its success in many domains, reinforcement learning is challenging to apply to problems with hard constraints, especially if both the state variables and actions are constrained. Previous works seeking to ensure constraint satisfaction, or safety, have focused on adding a projection step to a learned policy. Yet, this approach requires solving an optimization problem at every policy execution step, which can lead to significant computational costs. To tackle this problem, this paper proposes a new approach, termed Vertex Networks (VNs), with guarantees on safety during exploration and on learned control policies by incorporating the safety constraints into the policy network architecture. Leveraging the geometric property that all points within a convex set can be represented as the convex combination of its vertices, the proposed algorithm first learns the convex combination weights and then uses these weights along with the pre-calculated vertices to output an action. The output action is guaranteed to be safe by construction. Numerical examples illustrate that the proposed VN algorithm outperforms vanilla reinforcement learning in a variety of benchmark control tasks.
Under voltage load shedding has been considered as a standard and effective measure to recover the voltage stability of the electric power grid under emergency and severe conditions. However, this scheme usually trips a massive amount of load which can be unnecessary and harmful to customers. Recently, deep reinforcement learning (RL) has been regarded and adopted as a promising approach that can significantly reduce the amount of load shedding. However, like most existing machine learning (ML)-based control techniques, RL control usually cannot guarantee the safety of the systems under control. In this paper, we introduce a novel safe RL method for emergency load shedding of power systems, that can enhance the safe voltage recovery of the electric power grid after experiencing faults. Unlike the standard RL method, the safe RL method has a reward function consisting of a Barrier function that goes to minus infinity when the system state goes to the safety bounds. Consequently, the optimal control policy can render the power system to avoid the safety bounds. This method is general and can be applied to other safety-critical control problems. Numerical simulations on the 39-bus IEEE benchmark is performed to demonstrate the effectiveness of the proposed safe RL emergency control, as well as its adaptive capability to faults not seen in the training.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا