No Arabic abstract
This paper proposes a black box based approach for analysing deep neural networks (DNNs). We view a DNN as a function $boldsymbol{f}$ from inputs to outputs, and consider the local robustness property for a given input. Based on scenario optimization technique in robust control design, we learn the score difference function $f_i-f_ell$ with respect to the target label $ell$ and attacking label $i$. We use a linear template over the input pixels, and learn the corresponding coefficients of the score difference function, based on a reduction to a linear programming (LP) problems. To make it scalable, we propose optimizations including components based learning and focused learning. The learned function offers a probably approximately correct (PAC) guarantee for the robustness property. Since the score difference function is an approximation of the local behaviour of the DNN, it can be used to generate potential adversarial examples, and the original network can be used to check whether they are spurious or not. Finally, we focus on the input pixels with large absolute coefficients, and use them to explain the attacking scenario. We have implemented our approach in a prototypical tool DeepPAC. Our experimental results show that our framework can handle very large neural networks like ResNet152 with $6.5$M neurons, and often generates adversarial examples which are very close to the decision boundary.
We propose the first general PAC-Bayesian generalization bounds for adversarial robustness, that estimate, at test time, how much a model will be invariant to imperceptible perturbations in the input. Instead of deriving a worst-case analysis of the risk of a hypothesis over all the possible perturbations, we leverage the PAC-Bayesian framework to bound the averaged risk on the perturbations for majority votes (over the whole class of hypotheses). Our theoretically founded analysis has the advantage to provide general bounds (i) independent from the type of perturbations (i.e., the adversarial attacks), (ii) that are tight thanks to the PAC-Bayesian framework, (iii) that can be directly minimized during the learning phase to obtain a robust model on different attacks at test time.
Meta-learning for few-shot learning entails acquiring a prior over previous tasks and experiences, such that new tasks be learned from small amounts of data. However, a critical challenge in few-shot learning is task ambiguity: even when a powerful prior can be meta-learned from a large number of prior tasks, a small dataset for a new task can simply be too ambiguous to acquire a single model (e.g., a classifier) for that task that is accurate. In this paper, we propose a probabilistic meta-learning algorithm that can sample models for a new task from a model distribution. Our approach extends model-agnostic meta-learning, which adapts to new tasks via gradient descent, to incorporate a parameter distribution that is trained via a variational lower bound. At meta-test time, our algorithm adapts via a simple procedure that injects noise into gradient descent, and at meta-training time, the model is trained such that this stochastic adaptation procedure produces samples from the approximate model posterior. Our experimental results show that our method can sample plausible classifiers and regressors in ambiguous few-shot learning problems. We also show how reasoning about ambiguity can also be used for downstream active learning problems.
Several studies point out different causes of performance degradation in supervised machine learning. Problems such as class imbalance, overlapping, small-disjuncts, noisy labels, and sparseness limit accuracy in classification algorithms. Even though a number of approaches either in the form of a methodology or an algorithm try to minimize performance degradation, they have been isolated efforts with limited scope. Most of these approaches focus on remediation of one among many problems, with experimental results coming from few datasets and classification algorithms, insufficient measures of prediction power, and lack of statistical validation for testing the real benefit of the proposed approach. This paper consists of two main parts: In the first part, a novel probabilistic diagnostic model based on identifying signs and symptoms of each problem is presented. Thereby, early and correct diagnosis of these problems is to be achieved in order to select not only the most convenient remediation treatment but also unbiased performance metrics. Secondly, the behavior and performance of several supervised algorithms are studied when training sets have such problems. Therefore, prediction of success for treatments can be estimated across classifiers.
We present a distributional approach to theoretical analyses of reinforcement learning algorithms for constant step-sizes. We demonstrate its effectiveness by presenting simple and unified proofs of convergence for a variety of commonly-used methods. We show that value-based methods such as TD($lambda$) and $Q$-Learning have update rules which are contractive in the space of distributions of functions, thus establishing their exponentially fast convergence to a stationary distribution. We demonstrate that the stationary distribution obtained by any algorithm whose target is an expected Bellman update has a mean which is equal to the true value function. Furthermore, we establish that the distributions concentrate around their mean as the step-size shrinks. We further analyse the optimistic policy iteration algorithm, for which the contraction property does not hold, and formulate a probabilistic policy improvement property which entails the convergence of the algorithm.
The balance between exploration and exploitation is a key problem for reinforcement learning methods, especially for Q-learning. In this paper, a fidelity-based probabilistic Q-learning (FPQL) approach is presented to naturally solve this problem and applied for learning control of quantum systems. In this approach, fidelity is adopted to help direct the learning process and the probability of each action to be selected at a certain state is updated iteratively along with the learning process, which leads to a natural exploration strategy instead of a pointed one with configured parameters. A probabilistic Q-learning (PQL) algorithm is first presented to demonstrate the basic idea of probabilistic action selection. Then the FPQL algorithm is presented for learning control of quantum systems. Two examples (a spin- 1/2 system and a lamda-type atomic system) are demonstrated to test the performance of the FPQL algorithm. The results show that FPQL algorithms attain a better balance between exploration and exploitation, and can also avoid local optimal policies and accelerate the learning process.