Do you want to publish a course? Click here

Magnetic domain walls as broadband spin wave and elastic magnetisation wave emitters

96   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the direct observation of spin wave and elastic wave emission from magnetic domain walls in ferromagnetic thin films. Driven by alternating homogeneous magnetic fields the magnetic domain walls act as coherent magnetisation wave sources. Directional and low damped elastic waves below and above the ferromagnetic resonance are excited. The wave vector of the magnetoelastically induced acoustic shear waves is linearly tuned by varying the excitation frequency. Domain wall emitted magnetostatic surface spin waves occur at higher frequencies, which characteristics are confirmed by micromagnetic simulations. The distinct modes of magnetisation wave excitation from micromagnetic objects are a general physical phenomenon relevant for dynamic magnetisation processes in structured magnetic films. Magnetic domain walls can act as reconfigurable antennas for spin wave and elastic wave generation with control of the wave orientation.



rate research

Read More

Through numerical solution of the time-dependent Schrodinger equation, we demonstrate that magnetic chains with uniaxial anisotropy support stable structures, separating ferromagnetic domains of opposite magnetization. These structures, domain walls in a quantum system, are shown to remain stable if they interact with a spin wave. We find that a domain wall transmits the longitudinal component of the spin excitations only. Our results suggests that continuous, classical spin models described by LLG equation cannot be used to describe spin wave-domain wall interaction in microscopic magnetic systems.
The motion of magnetic domain walls in ultrathin magnetic heterostructures driven by current via the spin Hall torque is described. We show results from perpendicularly magnetized CoFeB|MgO heterostructures with various heavy metal underlayers. The domain wall moves along or against the current flow depending on the underlayer material. The direction to which the domain wall moves is associated with the chirality of the domain wall spiral formed in these heterostructures. The one-dimensional model is used to describe the experimental results and extract parameters such as the Dzyaloshinskii-Moriya exchange constant which is responsible for the formation of the domain wall spiral. Fascinating effects arising from the control of interfaces in magnetic heterostructures are described.
Terahertz spin waves could be generated on-demand via all-optical manipulation of magnetization by femtosecond laser pulse. Here, we present an energy balance model, which explains the energy transfer rates from laser pulse to electron bath coupled with phonon, spin, and magnetization of five different magnetic metallic thin films: Iron, Cobalt, Nickel, Gadolinium and Ni$_{2}$MnSn Heusler alloy. Two types of transient magnetization dynamics emerge in metallic magnetic thin films based on their Curie temperatures (T$_{C}$): type I (Fe, Co, and Ni with T$_{C}$ > room temperature, RT) and type II films (Gd and Ni$_{2}$MnSn with T$_{C}$ $approx$ RT). We study the effect of laser fluence and pulse width for single Gaussian laser pulses and the effect of metal film thickness on magnetization dynamics. Spectral dynamics show that broadband spin waves up to 24 THz could be generated by all-optical manipulation of magnetization in these nanofilms.
169 - Jin Lan , Weichao Yu , Jiang Xiao 2020
Spin wave, the collective excitation of magnetic order, is one of the fundamental angular momentum carriers in magnetic systems. Understanding the spin wave propagation in magnetic textures lies in the heart of developing pure magnetic information processing schemes. Here we show that the spin wave propagation across a chiral domain wall follows simple geometric trajectories, similar to the geometric optics. And the geometric behaviors are qualitatively different in normally magnetized film and tangentially magnetized film. We identify the lateral shift, refraction, and total reflection of spin wave across a ferromagnetic domain wall. Moreover, these geometric scattering phenomena become polarization-dependent in antiferromagnets, indicating the emergence of spin wave birefringence inside antiferromagnetic domain wall.
Active manipulation of spin waves is essential for the development of magnon-based technologies. Here, we demonstrate programmable spin-wave filtering by resetting the spin structure of a pinned 90$^circ$ N{e}el domain wall in a continuous CoFeB film with abrupt rotations of uniaxial magnetic anisotropy. Using phase-resolved micro-focused Brillouin light scattering and micromagnetic simulations, we show that broad 90$^circ$ head-to-head or tail-to-tail magnetic domain walls are transparent to spin waves over a broad frequency range. In contrast, magnetic switching to a 90$^circ$ head-to-tail configuration produces much narrower domain walls at the same pinning locations. Spin waves are strongly reflected by a resonance mode in these magnetic domain walls. Based on these results, we propose a magnetic spin-wave valve with two parallel domain walls. Switching the spin-wave valve from an open to a close state changes the transmission of spin waves from nearly 100% to 0% at the resonance frequency. This active control over spin-wave transport could be utilized in magnonic logic devices or non-volatile memory elements.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا