Do you want to publish a course? Click here

Adversarial Noise Attacks of Deep Learning Architectures -- Stability Analysis via Sparse Modeled Signals

66   0   0.0 ( 0 )
 Added by Yaniv Romano
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Despite their impressive performance, deep convolutional neural networks (CNNs) have been shown to be sensitive to small adversarial perturbations. These nuisances, which one can barely notice, are powerful enough to fool sophisticated and well performing classifiers, leading to ridiculous misclassification results. In this paper we analyze the stability of state-of-the-art deep-learning classification machines to adversarial perturbations, where we assume that the signals belong to the (possibly multi-layer) sparse representation model. We start with convolutional sparsity and then proceed to its multi-layered version, which is tightly connected to CNNs. Our analysis links between the stability of the classification to noise and the underlying structure of the signal, quantified by the sparsity of its representation under a fixed dictionary. In addition, we offer similar stability theorems for two practical pursuit algorithms, which are posed as two different deep-learning architectures - the layered Thresholding and the layered Basis Pursuit. Our analysis establishes the better robustness of the later to adversarial attacks. We corroborate these theoretical results by numerical experiments on three datasets: MNIST, CIFAR-10 and CIFAR-100.

rate research

Read More

Object ranking is an important problem in the realm of preference learning. On the basis of training data in the form of a set of rankings of objects, which are typically represented as feature vectors, the goal is to learn a ranking function that predicts a linear order of any new set of objects. Current approaches commonly focus on ranking by scoring, i.e., on learning an underlying latent utility function that seeks to capture the inherent utility of each object. These approaches, however, are not able to take possible effects of context-dependence into account, where context-dependence means that the utility or usefulness of an object may also depend on what other objects are available as alternatives. In this paper, we formalize the problem of context-dependent ranking and present two general approaches based on two natural representations of context-dependent ranking functions. Both approaches are instantiated by means of appropriate neural network architectures, which are evaluated on suitable benchmark task.
166 - Zhimei Ren , Zhengyuan Zhou 2020
We study the problem of dynamic batch learning in high-dimensional sparse linear contextual bandits, where a decision maker can only adapt decisions at a batch level. In particular, the decision maker, only observing rewards at the end of each batch, dynamically decides how many individuals to include in the next batch (at the current batchs end) and what personalized action-selection scheme to adopt within the batch. Such batch constraints are ubiquitous in a variety of practical contexts, including personalized product offerings in marketing and medical treatment selection in clinical trials. We characterize the fundamental learning limit in this problem via a novel lower bound analysis and provide a simple, exploration-free algorithm that uses the LASSO estimator, which achieves the minimax optimal performance characterized by the lower bound (up to log factors). To our best knowledge, our work provides the first inroad into a rigorous understanding of dynamic batch learning with high-dimensional covariates. We also demonstrate the efficacy of our algorithm on both synthetic data and the Warfarin medical dosing data. The empirical results show that with three batches (hence only two opportunities to adapt), our algorithm already performs comparably (in terms of statistical performance) to the state-of-the-art fully online high-dimensional linear contextual bandits algorithm. As an added bonus, since our algorithm operates in batches, it is orders of magnitudes faster than fully online learning algorithms. As such, our algorithm provides a desirable candidate for practical data-driven personalized decision making problems, where limited adaptivity is often a hard constraint.
Security of machine learning models is a concern as they may face adversarial attacks for unwarranted advantageous decisions. While research on the topic has mainly been focusing on the image domain, numerous industrial applications, in particular in finance, rely on standard tabular data. In this paper, we discuss the notion of adversarial examples in the tabular domain. We propose a formalization based on the imperceptibility of attacks in the tabular domain leading to an approach to generate imperceptible adversarial examples. Experiments show that we can generate imperceptible adversarial examples with a high fooling rate.
Graphical model selection in Markov random fields is a fundamental problem in statistics and machine learning. Two particularly prominent models, the Ising model and Gaussian model, have largely developed in parallel using different (though often related) techniques, and several practical algorithms with rigorous sample complexity bounds have been established for each. In this paper, we adapt a recently proposed algorithm of Klivans and Meka (FOCS, 2017), based on the method of multiplicative weight updates, from the Ising model to the Gaussian model, via non-trivial modifications to both the algorithm and its analysis. The algorithm enjoys a sample complexity bound that is qualitatively similar to others in the literature, has a low runtime $O(mp^2)$ in the case of $m$ samples and $p$ nodes, and can trivially be implemented in an online manner.
96 - Weihong Xu 2018
In this paper, we present a sparse neural network decoder (SNND) of polar codes based on belief propagation (BP) and deep learning. At first, the conventional factor graph of polar BP decoding is converted to the bipartite Tanner graph similar to low-density parity-check (LDPC) codes. Then the Tanner graph is unfolded and translated into the graphical representation of deep neural network (DNN). The complex sum-product algorithm (SPA) is modified to min-sum (MS) approximation with low complexity. We dramatically reduce the number of weight by using single weight to parameterize the networks. Optimized by the training techniques of deep learning, proposed SNND achieves comparative decoding performance of SPA and obtains about $0.5$ dB gain over MS decoding on ($128,64$) and ($256,128$) codes. Moreover, $60 %$ complexity reduction is achieved and the decoding latency is significantly lower than the conventional polar BP.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا