Do you want to publish a course? Click here

Dynamic Batch Learning in High-Dimensional Sparse Linear Contextual Bandits

167   0   0.0 ( 0 )
 Added by Zhimei Ren
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We study the problem of dynamic batch learning in high-dimensional sparse linear contextual bandits, where a decision maker can only adapt decisions at a batch level. In particular, the decision maker, only observing rewards at the end of each batch, dynamically decides how many individuals to include in the next batch (at the current batchs end) and what personalized action-selection scheme to adopt within the batch. Such batch constraints are ubiquitous in a variety of practical contexts, including personalized product offerings in marketing and medical treatment selection in clinical trials. We characterize the fundamental learning limit in this problem via a novel lower bound analysis and provide a simple, exploration-free algorithm that uses the LASSO estimator, which achieves the minimax optimal performance characterized by the lower bound (up to log factors). To our best knowledge, our work provides the first inroad into a rigorous understanding of dynamic batch learning with high-dimensional covariates. We also demonstrate the efficacy of our algorithm on both synthetic data and the Warfarin medical dosing data. The empirical results show that with three batches (hence only two opportunities to adapt), our algorithm already performs comparably (in terms of statistical performance) to the state-of-the-art fully online high-dimensional linear contextual bandits algorithm. As an added bonus, since our algorithm operates in batches, it is orders of magnitudes faster than fully online learning algorithms. As such, our algorithm provides a desirable candidate for practical data-driven personalized decision making problems, where limited adaptivity is often a hard constraint.



rate research

Read More

Stochastic linear bandits with high-dimensional sparse features are a practical model for a variety of domains, including personalized medicine and online advertising. We derive a novel $Omega(n^{2/3})$ dimension-free minimax regret lower bound for sparse linear bandits in the data-poor regime where the horizon is smaller than the ambient dimension and where the feature vectors admit a well-conditioned exploration distribution. This is complemented by a nearly matching upper bound for an explore-then-commit algorithm showing that that $Theta(n^{2/3})$ is the optimal rate in the data-poor regime. The results complement existing bounds for the data-rich regime and provide another example where carefully balancing the trade-off between information and regret is necessary. Finally, we prove a dimension-free $O(sqrt{n})$ regret upper bound under an additional assumption on the magnitude of the signal for relevant features.
We consider the problem of model selection for the general stochastic contextual bandits under the realizability assumption. We propose a successive refinement based algorithm called Adaptive Contextual Bandit ({ttfamily ACB}), that works in phases and successively eliminates model classes that are too simple to fit the given instance. We prove that this algorithm is adaptive, i.e., the regret rate order-wise matches that of {ttfamily FALCON}, the state-of-art contextual bandit algorithm of Levi et. al 20, that needs knowledge of the true model class. The price of not knowing the correct model class is only an additive term contributing to the second order term in the regret bound. This cost possess the intuitive property that it becomes smaller as the model class becomes easier to identify, and vice-versa. We then show that a much simpler explore-then-commit (ETC) style algorithm also obtains a regret rate of matching that of {ttfamily FALCON}, despite not knowing the true model class. However, the cost of model selection is higher in ETC as opposed to in {ttfamily ACB}, as expected. Furthermore, {ttfamily ACB} applied to the linear bandit setting with unknown sparsity, order-wise recovers the model selection guarantees previously established by algorithms tailored to the linear setting.
Standard approaches to decision-making under uncertainty focus on sequential exploration of the space of decisions. However, textit{simultaneously} proposing a batch of decisions, which leverages available resources for parallel experimentation, has the potential to rapidly accelerate exploration. We present a family of (parallel) contextual linear bandit algorithms, whose regret is nearly identical to their perfectly sequential counterparts -- given access to the same total number of oracle queries -- up to a lower-order burn-in term that is dependent on the context-set geometry. We provide matching information-theoretic lower bounds on parallel regret performance to establish our algorithms are asymptotically optimal in the time horizon. Finally, we also present an empirical evaluation of these parallel algorithms in several domains, including materials discovery and biological sequence design problems, to demonstrate the utility of parallelized bandits in practical settings.
Stochastic linear contextual bandit algorithms have substantial applications in practice, such as recommender systems, online advertising, clinical trials, etc. Recent works show that optimal bandit algorithms are vulnerable to adversarial attacks and can fail completely in the presence of attacks. Existing robust bandit algorithms only work for the non-contextual setting under the attack of rewards and cannot improve the robustness in the general and popular contextual bandit environment. In addition, none of the existing methods can defend against attacked context. In this work, we provide the first robust bandit algorithm for stochastic linear contextual bandit setting under a fully adaptive and omniscient attack. Our algorithm not only works under the attack of rewards, but also under attacked context. Moreover, it does not need any information about the attack budget or the particular form of the attack. We provide theoretical guarantees for our proposed algorithm and show by extensive experiments that our proposed algorithm significantly improves the robustness against various kinds of popular attacks.
Stochastic sparse linear bandits offer a practical model for high-dimensional online decision-making problems and have a rich information-regret structure. In this work we explore the use of information-directed sampling (IDS), which naturally balances the information-regret trade-off. We develop a class of information-theoretic Bayesian regret bounds that nearly match existing lower bounds on a variety of problem instances, demonstrating the adaptivity of IDS. To efficiently implement sparse IDS, we propose an empirical Bayesian approach for sparse posterior sampling using a spike-and-slab Gaussian-Laplace prior. Numerical results demonstrate significant regret reductions by sparse IDS relative to several baselines.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا