Do you want to publish a course? Click here

On the Convergence of Prior-Guided Zeroth-Order Optimization Algorithms

162   0   0.0 ( 0 )
 Added by Shuyu Cheng
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Zeroth-order (ZO) optimization is widely used to handle challenging tasks, such as query-based black-box adversarial attacks and reinforcement learning. Various attempts have been made to integrate prior information into the gradient estimation procedure based on finite differences, with promising empirical results. However, their convergence properties are not well understood. This paper makes an attempt to fill this gap by analyzing the convergence of prior-guided ZO algorithms under a greedy descent framework with various gradient estimators. We provide a convergence guarantee for the prior-guided random gradient-free (PRGF) algorithms. Moreover, to further accelerate over greedy descent methods, we present a new accelerated random search (ARS) algorithm that incorporates prior information, together with a convergence analysis. Finally, our theoretical results are confirmed by experiments on several numerical benchmarks as well as adversarial attacks.



rate research

Read More

93 - Yuansi Chen , Chi Jin , Bin Yu 2018
The overall performance or expected excess risk of an iterative machine learning algorithm can be decomposed into training error and generalization error. While the former is controlled by its convergence analysis, the latter can be tightly handled by algorithmic stability. The machine learning community has a rich history investigating convergence and stability separately. However, the question about the trade-off between these two quantities remains open. In this paper, we show that for any iterative algorithm at any iteration, the overall performance is lower bounded by the minimax statistical error over an appropriately chosen loss function class. This implies an important trade-off between convergence and stability of the algorithm -- a faster converging algorithm has to be less stable, and vice versa. As a direct consequence of this fundamental tradeoff, new convergence lower bounds can be derived for classes of algorithms constrained with different stability bounds. In particular, when the loss function is convex (or strongly convex) and smooth, we discuss the stability upper bounds of gradient descent (GD) and stochastic gradient descent and their variants with decreasing step sizes. For Nesterovs accelerated gradient descent (NAG) and heavy ball method (HB), we provide stability upper bounds for the quadratic loss function. Applying existing stability upper bounds for the gradient methods in our trade-off framework, we obtain lower bounds matching the well-established convergence upper bounds up to constants for these algorithms and conjecture similar lower bounds for NAG and HB. Finally, we numerically demonstrate the tightness of our stability bounds in terms of exponents in the rate and also illustrate via a simulated logistic regression problem that our stability bounds reflect the generalization errors better than the simple uniform convergence bounds for GD and NAG.
In this paper, we consider a stochastic distributed nonconvex optimization problem with the cost function being distributed over $n$ agents having access only to zeroth-order (ZO) information of the cost. This problem has various machine learning applications. As a solution, we propose two distributed ZO algorithms, in which at each iteration each agent samples the local stochastic ZO oracle at two points with an adaptive smoothing parameter. We show that the proposed algorithms achieve the linear speedup convergence rate $mathcal{O}(sqrt{p/(nT)})$ for smooth cost functions and $mathcal{O}(p/(nT))$ convergence rate when the global cost function additionally satisfies the Polyak--Lojasiewicz (P--L) condition, where $p$ and $T$ are the dimension of the decision variable and the total number of iterations, respectively. To the best of our knowledge, this is the first linear speedup result for distributed ZO algorithms, which enables systematic processing performance improvements by adding more agents. We also show that the proposed algorithms converge linearly when considering deterministic centralized optimization problems under the P--L condition. We demonstrate through numerical experiments the efficiency of our algorithms on generating adversarial examples from deep neural networks in comparison with baseline and recently proposed centralized and distributed ZO algorithms.
341 - Julien Mairal 2013
Majorization-minimization algorithms consist of iteratively minimizing a majorizing surrogate of an objective function. Because of its simplicity and its wide applicability, this principle has been very popular in statistics and in signal processing. In this paper, we intend to make this principle scalable. We introduce a stochastic majorization-minimization scheme which is able to deal with large-scale or possibly infinite data sets. When applied to convex optimization problems under suitable assumptions, we show that it achieves an expected convergence rate of $O(1/sqrt{n})$ after $n$ iterations, and of $O(1/n)$ for strongly convex functions. Equally important, our scheme almost surely converges to stationary points for a large class of non-convex problems. We develop several efficient algorithms based on our framework. First, we propose a new stochastic proximal gradient method, which experimentally matches state-of-the-art solvers for large-scale $ell_1$-logistic regression. Second, we develop an online DC programming algorithm for non-convex sparse estimation. Finally, we demonstrate the effectiveness of our approach for solving large-scale structured matrix factorization problems.
130 - Julien Mairal 2013
In this paper, we study optimization methods consisting of iteratively minimizing surrogates of an objective function. By proposing several algorithmic variants and simple convergence analyses, we make two main contributions. First, we provide a unified viewpoint for several first-order optimization techniques such as accelerated proximal gradient, block coordinate descent, or Frank-Wolfe algorithms. Second, we introduce a new incremental scheme that experimentally matches or outperforms state-of-the-art solvers for large-scale optimization problems typically arising in machine learning.
This paper investigates the stochastic distributed nonconvex optimization problem of minimizing a global cost function formed by the summation of $n$ local cost functions. We solve such a problem by involving zeroth-order (ZO) information exchange. In this paper, we propose a ZO distributed primal-dual coordinate method (ZODIAC) to solve the stochastic optimization problem. Agents approximate their own local stochastic ZO oracle along with coordinates with an adaptive smoothing parameter. We show that the proposed algorithm achieves the convergence rate of $mathcal{O}(sqrt{p}/sqrt{T})$ for general nonconvex cost functions. We demonstrate the efficiency of proposed algorithms through a numerical example in comparison with the existing state-of-the-art centralized and distributed ZO algorithms.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا